- Statistics Tutorial
- Home
- Adjusted R-Squared
- Analysis of Variance
- Arithmetic Mean
- Arithmetic Median
- Arithmetic Mode
- Arithmetic Range
- Bar Graph
- Best Point Estimation
- Beta Distribution
- Binomial Distribution
- Black-Scholes model
- Boxplots
- Central limit theorem
- Chebyshev's Theorem
- Chi-squared Distribution
- Chi Squared table
- Circular Permutation
- Cluster sampling
- Cohen's kappa coefficient
- Combination
- Combination with replacement
- Comparing plots
- Continuous Uniform Distribution
- Continuous Series Arithmetic Mean
- Continuous Series Arithmetic Median
- Continuous Series Arithmetic Mode
- Cumulative Frequency
- Co-efficient of Variation
- Correlation Co-efficient
- Cumulative plots
- Cumulative Poisson Distribution
- Data collection
- Data collection - Questionaire Designing
- Data collection - Observation
- Data collection - Case Study Method
- Data Patterns
- Deciles Statistics
- Discrete Series Arithmetic Mean
- Discrete Series Arithmetic Median
- Discrete Series Arithmetic Mode
- Dot Plot
- Exponential distribution
- F distribution
- F Test Table
- Factorial
- Frequency Distribution
- Gamma Distribution
- Geometric Mean
- Geometric Probability Distribution
- Goodness of Fit
- Grand Mean
- Gumbel Distribution
- Harmonic Mean
- Harmonic Number
- Harmonic Resonance Frequency
- Histograms
- Hypergeometric Distribution
- Hypothesis testing
- Individual Series Arithmetic Mean
- Individual Series Arithmetic Median
- Individual Series Arithmetic Mode
- Interval Estimation
- Inverse Gamma Distribution
- Kolmogorov Smirnov Test
- Kurtosis
- Laplace Distribution
- Linear regression
- Log Gamma Distribution
- Logistic Regression
- Mcnemar Test
- Mean Deviation
- Means Difference
- Multinomial Distribution
- Negative Binomial Distribution
- Normal Distribution
- Odd and Even Permutation
- One Proportion Z Test
- Outlier Function
- Permutation
- Permutation with Replacement
- Pie Chart
- Poisson Distribution
- Pooled Variance (r)
- Power Calculator
- Probability
- Probability Additive Theorem
- Probability Multiplecative Theorem
- Probability Bayes Theorem
- Probability Density Function
- Process Capability (Cp) & Process Performance (Pp)
- Process Sigma
- Quadratic Regression Equation
- Qualitative Data Vs Quantitative Data
- Quartile Deviation
- Range Rule of Thumb
- Rayleigh Distribution
- Regression Intercept Confidence Interval
- Relative Standard Deviation
- Reliability Coefficient
- Required Sample Size
- Residual analysis
- Residual sum of squares
- Root Mean Square
- Sample planning
- Sampling methods
- Scatterplots
- Shannon Wiener Diversity Index
- Signal to Noise Ratio
- Simple random sampling
- Skewness
- Standard Deviation
- Standard Error ( SE )
- Standard normal table
- Statistical Significance
- Statistics Formulas
- Statistics Notation
- Stem and Leaf Plot
- Stratified sampling
- Student T Test
- Sum of Square
- T-Distribution Table
- Ti 83 Exponential Regression
- Transformations
- Trimmed Mean
- Type I & II Error
- Variance
- Venn Diagram
- Weak Law of Large Numbers
- Z table
- Statistics Useful Resources
- Statistics - Discussion
Statistics - Ti 83 Exponential Regression
Ti 83 Exponential Regression is used to compute an equation which best fits the co-relation between sets of indisciriminate variables.
Formula
${ y = a \times b^x}$
Where −
${a, b}$ = coefficients for the exponential.
Example
Problem Statement:
Calculate Exponential Regression Equation(y) for the following data points.
Time (min), Ti | 0 | 5 | 10 | 15 |
---|---|---|---|---|
Temperature (°F), Te | 140 | 129 | 119 | 112 |
Solution:
Let consider a and b as coefficients for the exponential Regression.
Step 1
${ b = e^{ \frac{n \times \sum Ti log(Te) - \sum (Ti) \times \sum log(Te) } {n \times \sum (Ti)^2 - \times (Ti) \times \sum (Ti) }} } $
Where −
${n}$ = total number of items.
${ \sum Ti log(Te) = 0 \times log(140) + 5 \times log(129) + 10 \times log(119) + 15 \times log(112) = 62.0466 \\[7pt] \sum log(L2) = log(140) + log(129) + log(119) + log(112) = 8.3814 \\[7pt] \sum Ti = (0 + 5 + 10 + 15) = 30 \\[7pt] \sum Ti^2 = (0^2 + 5^2 + 10^2 + 15^2) = 350 \\[7pt] \implies b = e^{\frac {4 \times 62.0466 - 30 \times 8.3814} {4 \times 350 - 30 \times 30}} \\[7pt] = e^{-0.0065112} \\[7pt] = 0.9935 } $
Step 2
${ a = e^{ \frac{\sum log(Te) - \sum (Ti) \times log(b)}{n} } \\[7pt] = e^{\frac{8.3814 - 30 \times log(0.9935)}{4}} \\[7pt] = e^2.116590964 \\[7pt] = 8.3028 } $
Step 3
Putting the value of a and b in Exponential Regression Equation(y), we get.
${ y = a \times b^x \\[7pt] = 8.3028 \times 0.9935^x } $