- PyTorch Tutorial
- PyTorch - Home
- PyTorch - Introduction
- PyTorch - Installation
- Mathematical Building Blocks of Neural Networks
- PyTorch - Neural Network Basics
- Universal Workflow of Machine Learning
- Machine Learning vs. Deep Learning
- Implementing First Neural Network
- Neural Networks to Functional Blocks
- PyTorch - Terminologies
- PyTorch - Loading Data
- PyTorch - Linear Regression
- PyTorch - Convolutional Neural Network
- PyTorch - Recurrent Neural Network
- PyTorch - Datasets
- PyTorch - Introduction to Convents
- Training a Convent from Scratch
- PyTorch - Feature Extraction in Convents
- PyTorch - Visualization of Convents
- Sequence Processing with Convents
- PyTorch - Word Embedding
- PyTorch - Recursive Neural Networks
- PyTorch Useful Resources
- PyTorch - Quick Guide
- PyTorch - Useful Resources
- PyTorch - Discussion
PyTorch - Introduction to Convents
Convents is all about building the CNN model from scratch. The network architecture will contain a combination of following steps −
- Conv2d
- MaxPool2d
- Rectified Linear Unit
- View
- Linear Layer
Training the Model
Training the model is the same process like image classification problems. The following code snippet completes the procedure of a training model on the provided dataset −
def fit(epoch,model,data_loader,phase = 'training',volatile = False): if phase == 'training': model.train() if phase == 'training': model.train() if phase == 'validation': model.eval() volatile=True running_loss = 0.0 running_correct = 0 for batch_idx , (data,target) in enumerate(data_loader): if is_cuda: data,target = data.cuda(),target.cuda() data , target = Variable(data,volatile),Variable(target) if phase == 'training': optimizer.zero_grad() output = model(data) loss = F.nll_loss(output,target) running_loss + = F.nll_loss(output,target,size_average = False).data[0] preds = output.data.max(dim = 1,keepdim = True)[1] running_correct + = preds.eq(target.data.view_as(preds)).cpu().sum() if phase == 'training': loss.backward() optimizer.step() loss = running_loss/len(data_loader.dataset) accuracy = 100. * running_correct/len(data_loader.dataset) print(f'{phase} loss is {loss:{5}.{2}} and {phase} accuracy is {running_correct}/{len(data_loader.dataset)}{accuracy:{return loss,accuracy}})
The method includes different logic for training and validation. There are two primary reasons for using different modes −
In train mode, dropout removes a percentage of values, which should not happen in the validation or testing phase.
For training mode, we calculate gradients and change the model's parameters value, but back propagation is not required during the testing or validation phases.
Advertisements