- Python Basics
- Python - Home
- Python - Overview
- Python - History
- Python - Features
- Python vs C++
- Python - Hello World Program
- Python - Application Areas
- Python - Interpreter
- Python - Environment Setup
- Python - Virtual Environment
- Python - Basic Syntax
- Python - Variables
- Python - Data Types
- Python - Type Casting
- Python - Unicode System
- Python - Literals
- Python - Operators
- Python - Arithmetic Operators
- Python - Comparison Operators
- Python - Assignment Operators
- Python - Logical Operators
- Python - Bitwise Operators
- Python - Membership Operators
- Python - Identity Operators
- Python - Operator Precedence
- Python - Comments
- Python - User Input
- Python - Numbers
- Python - Booleans
- Python Control Statements
- Python - Control Flow
- Python - Decision Making
- Python - If Statement
- Python - If else
- Python - Nested If
- Python - Match-Case Statement
- Python - Loops
- Python - for Loops
- Python - for-else Loops
- Python - While Loops
- Python - break Statement
- Python - continue Statement
- Python - pass Statement
- Python - Nested Loops
- Python Functions & Modules
- Python - Functions
- Python - Default Arguments
- Python - Keyword Arguments
- Python - Keyword-Only Arguments
- Python - Positional Arguments
- Python - Positional-Only Arguments
- Python - Arbitrary Arguments
- Python - Variables Scope
- Python - Function Annotations
- Python - Modules
- Python - Built in Functions
- Python Strings
- Python - Strings
- Python - Slicing Strings
- Python - Modify Strings
- Python - String Concatenation
- Python - String Formatting
- Python - Escape Characters
- Python - String Methods
- Python - String Exercises
- Python Lists
- Python - Lists
- Python - Access List Items
- Python - Change List Items
- Python - Add List Items
- Python - Remove List Items
- Python - Loop Lists
- Python - List Comprehension
- Python - Sort Lists
- Python - Copy Lists
- Python - Join Lists
- Python - List Methods
- Python - List Exercises
- Python Tuples
- Python - Tuples
- Python - Access Tuple Items
- Python - Update Tuples
- Python - Unpack Tuples
- Python - Loop Tuples
- Python - Join Tuples
- Python - Tuple Methods
- Python - Tuple Exercises
- Python Sets
- Python - Sets
- Python - Access Set Items
- Python - Add Set Items
- Python - Remove Set Items
- Python - Loop Sets
- Python - Join Sets
- Python - Copy Sets
- Python - Set Operators
- Python - Set Methods
- Python - Set Exercises
- Python Dictionaries
- Python - Dictionaries
- Python - Access Dictionary Items
- Python - Change Dictionary Items
- Python - Add Dictionary Items
- Python - Remove Dictionary Items
- Python - Dictionary View Objects
- Python - Loop Dictionaries
- Python - Copy Dictionaries
- Python - Nested Dictionaries
- Python - Dictionary Methods
- Python - Dictionary Exercises
- Python Arrays
- Python - Arrays
- Python - Access Array Items
- Python - Add Array Items
- Python - Remove Array Items
- Python - Loop Arrays
- Python - Copy Arrays
- Python - Reverse Arrays
- Python - Sort Arrays
- Python - Join Arrays
- Python - Array Methods
- Python - Array Exercises
- Python File Handling
- Python - File Handling
- Python - Write to File
- Python - Read Files
- Python - Renaming and Deleting Files
- Python - Directories
- Python - File Methods
- Python - OS File/Directory Methods
- Python - OS Path Methods
- Object Oriented Programming
- Python - OOPs Concepts
- Python - Classes & Objects
- Python - Class Attributes
- Python - Class Methods
- Python - Static Methods
- Python - Constructors
- Python - Access Modifiers
- Python - Inheritance
- Python - Polymorphism
- Python - Method Overriding
- Python - Method Overloading
- Python - Dynamic Binding
- Python - Dynamic Typing
- Python - Abstraction
- Python - Encapsulation
- Python - Interfaces
- Python - Packages
- Python - Inner Classes
- Python - Anonymous Class and Objects
- Python - Singleton Class
- Python - Wrapper Classes
- Python - Enums
- Python - Reflection
- Python Errors & Exceptions
- Python - Syntax Errors
- Python - Exceptions
- Python - try-except Block
- Python - try-finally Block
- Python - Raising Exceptions
- Python - Exception Chaining
- Python - Nested try Block
- Python - User-defined Exception
- Python - Logging
- Python - Assertions
- Python - Built-in Exceptions
- Python Multithreading
- Python - Multithreading
- Python - Thread Life Cycle
- Python - Creating a Thread
- Python - Starting a Thread
- Python - Joining Threads
- Python - Naming Thread
- Python - Thread Scheduling
- Python - Thread Pools
- Python - Main Thread
- Python - Thread Priority
- Python - Daemon Threads
- Python - Synchronizing Threads
- Python Synchronization
- Python - Inter-thread Communication
- Python - Thread Deadlock
- Python - Interrupting a Thread
- Python Networking
- Python - Networking
- Python - Socket Programming
- Python - URL Processing
- Python - Generics
- Python Libraries
- NumPy Tutorial
- Pandas Tutorial
- SciPy Tutorial
- Matplotlib Tutorial
- Django Tutorial
- OpenCV Tutorial
- Python Miscellenous
- Python - Date & Time
- Python - Maths
- Python - Iterators
- Python - Generators
- Python - Closures
- Python - Decorators
- Python - Recursion
- Python - Reg Expressions
- Python - PIP
- Python - Database Access
- Python - Weak References
- Python - Serialization
- Python - Templating
- Python - Output Formatting
- Python - Performance Measurement
- Python - Data Compression
- Python - CGI Programming
- Python - XML Processing
- Python - GUI Programming
- Python - Command-Line Arguments
- Python - Docstrings
- Python - JSON
- Python - Sending Email
- Python - Further Extensions
- Python - Tools/Utilities
- Python - GUIs
- Python Useful Resources
- Python Compiler
- NumPy Compiler
- Matplotlib Compiler
- SciPy Compiler
- Python - Questions & Answers
- Python - Online Quiz
- Python - Programming Examples
- Python - Quick Guide
- Python - Useful Resources
- Python - Discussion
Python - Thread Scheduling
Python supports multiple threads in a program. A multi-threaded program can execute multiple sub-tasks independently, which allows the parallel execution of tasks.
Python interpreter maps Python thread requests to either POSIX/pthreads, or Windows threads. Hence, similar to ordinary threads, Python threads are handled by the host operating system.
However, there is no support for thread scheduling in the Python interpreter. Hence, thread priority, scheduling schemes, and thread pre-emption is not possible with the Python interpreter. The scheduling and context switching of Python threads is at the disposal of the host scheduler.
Python does have some support for task scheduling in the form of sched module as the standard library. It can be used in the creation of bots and other monitoring and automation applications. The sched module implements a generic event scheduler for running tasks at specific times. It provides similar tools like task scheduler in windows or Linux.
The scheduler class is defined in the sched built-in module.
scheduler(timefunc=time.monotonic, delayfunc=time.sleep)
The methods defined in scheduler class include −
scheduler.enter() − Events can be scheduled to run after a delay, or at a specific time. To schedule them with a delay, enter() method is used.
scheduler.cancel() − Remove the event from the queue. If the event is not an event currently in the queue, this method will raise a ValueError.
scheduler.run(blocking=True) − Run all scheduled events.
Events can be scheduled to run after a delay, or at a specific time. To schedule them with a delay, use the enter() method, which takes four arguments.
A number representing the delay
A priority value
The function to call
A tuple of arguments for the function
Example 1
This example schedules two different events −
import sched import time scheduler = sched.scheduler(time.time, time.sleep) def schedule_event(name, start): now = time.time() elapsed = int(now - start) print('elapsed=',elapsed, 'name=', name) start = time.time() print('START:', time.ctime(start)) scheduler.enter(2, 1, schedule_event, ('EVENT_1', start)) scheduler.enter(5, 1, schedule_event, ('EVENT_2', start)) scheduler.run()
It will produce the following output −
START: Mon Jun 5 15:37:29 2023 elapsed= 2 name= EVENT_1 elapsed= 5 name= EVENT_2
Example 2
Let's take another example to understand the concept better −
import sched from datetime import datetime import time def addition(a,b): print("Performing Addition : ", datetime.now()) print("Time : ", time.monotonic()) print("Result : ", a+b) s = sched.scheduler() print("Start Time : ", datetime.now()) event1 = s.enter(10, 1, addition, argument = (5,6)) print("Event Created : ", event1) s.run() print("End Time : ", datetime.now())
It will produce the following output −
Start Time : 2023-06-05 15:49:49.508400 Event Created : Event(time=774087.453, priority=1, sequence=0, action=<function addition at 0x000001FFE71A1080>, argument=(5, 6), kwargs={}) Performing Addition : 2023-06-05 15:49:59.512213 Time : 774087.484 Result : 11 End Time : 2023-06-05 15:49:59.559659