- Python Pandas Tutorial
- Python Pandas - Home
- Python Pandas - Introduction
- Python Pandas - Environment Setup
- Introduction to Data Structures
- Python Pandas - Series
- Python Pandas - DataFrame
- Python Pandas - Panel
- Python Pandas - Basic Functionality
- Descriptive Statistics
- Function Application
- Python Pandas - Reindexing
- Python Pandas - Iteration
- Python Pandas - Sorting
- Working with Text Data
- Options & Customization
- Indexing & Selecting Data
- Statistical Functions
- Python Pandas - Window Functions
- Python Pandas - Aggregations
- Python Pandas - Missing Data
- Python Pandas - GroupBy
- Python Pandas - Merging/Joining
- Python Pandas - Concatenation
- Python Pandas - Date Functionality
- Python Pandas - Timedelta
- Python Pandas - Categorical Data
- Python Pandas - Visualization
- Python Pandas - IO Tools
- Python Pandas - Sparse Data
- Python Pandas - Caveats & Gotchas
- Comparison with SQL
- Python Pandas Useful Resources
- Python Pandas - Quick Guide
- Python Pandas - Useful Resources
- Python Pandas - Discussion
Python Pandas - Merging/Joining
Pandas has full-featured, high performance in-memory join operations idiomatically very similar to relational databases like SQL.
Pandas provides a single function, merge, as the entry point for all standard database join operations between DataFrame objects −
pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=True)
Here, we have used the following parameters −
left − A DataFrame object.
right − Another DataFrame object.
on − Columns (names) to join on. Must be found in both the left and right DataFrame objects.
left_on − Columns from the left DataFrame to use as keys. Can either be column names or arrays with length equal to the length of the DataFrame.
right_on − Columns from the right DataFrame to use as keys. Can either be column names or arrays with length equal to the length of the DataFrame.
left_index − If True, use the index (row labels) from the left DataFrame as its join key(s). In case of a DataFrame with a MultiIndex (hierarchical), the number of levels must match the number of join keys from the right DataFrame.
right_index − Same usage as left_index for the right DataFrame.
how − One of 'left', 'right', 'outer', 'inner'. Defaults to inner. Each method has been described below.
sort − Sort the result DataFrame by the join keys in lexicographical order. Defaults to True, setting to False will improve the performance substantially in many cases.
Let us now create two different DataFrames and perform the merging operations on it.
# import the pandas library import pandas as pd left = pd.DataFrame({ 'id':[1,2,3,4,5], 'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'], 'subject_id':['sub1','sub2','sub4','sub6','sub5']}) right = pd.DataFrame( {'id':[1,2,3,4,5], 'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'], 'subject_id':['sub2','sub4','sub3','sub6','sub5']}) print left print right
Its output is as follows −
Name id subject_id 0 Alex 1 sub1 1 Amy 2 sub2 2 Allen 3 sub4 3 Alice 4 sub6 4 Ayoung 5 sub5 Name id subject_id 0 Billy 1 sub2 1 Brian 2 sub4 2 Bran 3 sub3 3 Bryce 4 sub6 4 Betty 5 sub5
Merge Two DataFrames on a Key
import pandas as pd left = pd.DataFrame({ 'id':[1,2,3,4,5], 'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'], 'subject_id':['sub1','sub2','sub4','sub6','sub5']}) right = pd.DataFrame({ 'id':[1,2,3,4,5], 'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'], 'subject_id':['sub2','sub4','sub3','sub6','sub5']}) print pd.merge(left,right,on='id')
Its output is as follows −
Name_x id subject_id_x Name_y subject_id_y 0 Alex 1 sub1 Billy sub2 1 Amy 2 sub2 Brian sub4 2 Allen 3 sub4 Bran sub3 3 Alice 4 sub6 Bryce sub6 4 Ayoung 5 sub5 Betty sub5
Merge Two DataFrames on Multiple Keys
import pandas as pd left = pd.DataFrame({ 'id':[1,2,3,4,5], 'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'], 'subject_id':['sub1','sub2','sub4','sub6','sub5']}) right = pd.DataFrame({ 'id':[1,2,3,4,5], 'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'], 'subject_id':['sub2','sub4','sub3','sub6','sub5']}) print pd.merge(left,right,on=['id','subject_id'])
Its output is as follows −
Name_x id subject_id Name_y 0 Alice 4 sub6 Bryce 1 Ayoung 5 sub5 Betty
Merge Using 'how' Argument
The how argument to merge specifies how to determine which keys are to be included in the resulting table. If a key combination does not appear in either the left or the right tables, the values in the joined table will be NA.
Here is a summary of the how options and their SQL equivalent names −
Merge Method | SQL Equivalent | Description |
---|---|---|
left | LEFT OUTER JOIN | Use keys from left object |
right | RIGHT OUTER JOIN | Use keys from right object |
outer | FULL OUTER JOIN | Use union of keys |
inner | INNER JOIN | Use intersection of keys |
Left Join
import pandas as pd left = pd.DataFrame({ 'id':[1,2,3,4,5], 'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'], 'subject_id':['sub1','sub2','sub4','sub6','sub5']}) right = pd.DataFrame({ 'id':[1,2,3,4,5], 'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'], 'subject_id':['sub2','sub4','sub3','sub6','sub5']}) print pd.merge(left, right, on='subject_id', how='left')
Its output is as follows −
Name_x id_x subject_id Name_y id_y 0 Alex 1 sub1 NaN NaN 1 Amy 2 sub2 Billy 1.0 2 Allen 3 sub4 Brian 2.0 3 Alice 4 sub6 Bryce 4.0 4 Ayoung 5 sub5 Betty 5.0
Right Join
import pandas as pd left = pd.DataFrame({ 'id':[1,2,3,4,5], 'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'], 'subject_id':['sub1','sub2','sub4','sub6','sub5']}) right = pd.DataFrame({ 'id':[1,2,3,4,5], 'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'], 'subject_id':['sub2','sub4','sub3','sub6','sub5']}) print pd.merge(left, right, on='subject_id', how='right')
Its output is as follows −
Name_x id_x subject_id Name_y id_y 0 Amy 2.0 sub2 Billy 1 1 Allen 3.0 sub4 Brian 2 2 Alice 4.0 sub6 Bryce 4 3 Ayoung 5.0 sub5 Betty 5 4 NaN NaN sub3 Bran 3
Outer Join
import pandas as pd left = pd.DataFrame({ 'id':[1,2,3,4,5], 'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'], 'subject_id':['sub1','sub2','sub4','sub6','sub5']}) right = pd.DataFrame({ 'id':[1,2,3,4,5], 'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'], 'subject_id':['sub2','sub4','sub3','sub6','sub5']}) print pd.merge(left, right, how='outer', on='subject_id')
Its output is as follows −
Name_x id_x subject_id Name_y id_y 0 Alex 1.0 sub1 NaN NaN 1 Amy 2.0 sub2 Billy 1.0 2 Allen 3.0 sub4 Brian 2.0 3 Alice 4.0 sub6 Bryce 4.0 4 Ayoung 5.0 sub5 Betty 5.0 5 NaN NaN sub3 Bran 3.0
Inner Join
Joining will be performed on index. Join operation honors the object on which it is called. So, a.join(b) is not equal to b.join(a).
import pandas as pd left = pd.DataFrame({ 'id':[1,2,3,4,5], 'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'], 'subject_id':['sub1','sub2','sub4','sub6','sub5']}) right = pd.DataFrame({ 'id':[1,2,3,4,5], 'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'], 'subject_id':['sub2','sub4','sub3','sub6','sub5']}) print pd.merge(left, right, on='subject_id', how='inner')
Its output is as follows −
Name_x id_x subject_id Name_y id_y 0 Amy 2 sub2 Billy 1 1 Allen 3 sub4 Brian 2 2 Alice 4 sub6 Bryce 4 3 Ayoung 5 sub5 Betty 5