- Python Pandas Tutorial
- Python Pandas - Home
- Python Pandas - Introduction
- Python Pandas - Environment Setup
- Introduction to Data Structures
- Python Pandas - Series
- Python Pandas - DataFrame
- Python Pandas - Panel
- Python Pandas - Basic Functionality
- Descriptive Statistics
- Function Application
- Python Pandas - Reindexing
- Python Pandas - Iteration
- Python Pandas - Sorting
- Working with Text Data
- Options & Customization
- Indexing & Selecting Data
- Statistical Functions
- Python Pandas - Window Functions
- Python Pandas - Aggregations
- Python Pandas - Missing Data
- Python Pandas - GroupBy
- Python Pandas - Merging/Joining
- Python Pandas - Concatenation
- Python Pandas - Date Functionality
- Python Pandas - Timedelta
- Python Pandas - Categorical Data
- Python Pandas - Visualization
- Python Pandas - IO Tools
- Python Pandas - Sparse Data
- Python Pandas - Caveats & Gotchas
- Comparison with SQL
- Python Pandas Useful Resources
- Python Pandas - Quick Guide
- Python Pandas - Useful Resources
- Python Pandas - Discussion
Python Pandas - Indexing and Selecting Data
In this chapter, we will discuss how to slice and dice the date and generally get the subset of pandas object.
The Python and NumPy indexing operators "[ ]" and attribute operator "." provide quick and easy access to Pandas data structures across a wide range of use cases. However, since the type of the data to be accessed isn’t known in advance, directly using standard operators has some optimization limits. For production code, we recommend that you take advantage of the optimized pandas data access methods explained in this chapter.
Pandas now supports three types of Multi-axes indexing; the three types are mentioned in the following table −
Sr.No | Indexing & Description |
---|---|
1 |
.loc() Label based |
2 |
.iloc() Integer based |
3 |
.ix() Both Label and Integer based |
.loc()
Pandas provide various methods to have purely label based indexing. When slicing, the start bound is also included. Integers are valid labels, but they refer to the label and not the position.
.loc() has multiple access methods like −
- A single scalar label
- A list of labels
- A slice object
- A Boolean array
loc takes two single/list/range operator separated by ','. The first one indicates the row and the second one indicates columns.
Example 1
#import the pandas library and aliasing as pd import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), index = ['a','b','c','d','e','f','g','h'], columns = ['A', 'B', 'C', 'D']) #select all rows for a specific column print df.loc[:,'A']
Its output is as follows −
a 0.391548 b -0.070649 c -0.317212 d -2.162406 e 2.202797 f 0.613709 g 1.050559 h 1.122680 Name: A, dtype: float64
Example 2
# import the pandas library and aliasing as pd import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), index = ['a','b','c','d','e','f','g','h'], columns = ['A', 'B', 'C', 'D']) # Select all rows for multiple columns, say list[] print df.loc[:,['A','C']]
Its output is as follows −
A C a 0.391548 0.745623 b -0.070649 1.620406 c -0.317212 1.448365 d -2.162406 -0.873557 e 2.202797 0.528067 f 0.613709 0.286414 g 1.050559 0.216526 h 1.122680 -1.621420
Example 3
# import the pandas library and aliasing as pd import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), index = ['a','b','c','d','e','f','g','h'], columns = ['A', 'B', 'C', 'D']) # Select few rows for multiple columns, say list[] print df.loc[['a','b','f','h'],['A','C']]
Its output is as follows −
A C a 0.391548 0.745623 b -0.070649 1.620406 f 0.613709 0.286414 h 1.122680 -1.621420
Example 4
# import the pandas library and aliasing as pd import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), index = ['a','b','c','d','e','f','g','h'], columns = ['A', 'B', 'C', 'D']) # Select range of rows for all columns print df.loc['a':'h']
Its output is as follows −
A B C D a 0.391548 -0.224297 0.745623 0.054301 b -0.070649 -0.880130 1.620406 1.419743 c -0.317212 -1.929698 1.448365 0.616899 d -2.162406 0.614256 -0.873557 1.093958 e 2.202797 -2.315915 0.528067 0.612482 f 0.613709 -0.157674 0.286414 -0.500517 g 1.050559 -2.272099 0.216526 0.928449 h 1.122680 0.324368 -1.621420 -0.741470
Example 5
# import the pandas library and aliasing as pd import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), index = ['a','b','c','d','e','f','g','h'], columns = ['A', 'B', 'C', 'D']) # for getting values with a boolean array print df.loc['a']>0
Its output is as follows −
A False B True C False D False Name: a, dtype: bool
.iloc()
Pandas provide various methods in order to get purely integer based indexing. Like python and numpy, these are 0-based indexing.
The various access methods are as follows −
- An Integer
- A list of integers
- A range of values
Example 1
# import the pandas library and aliasing as pd import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D']) # select all rows for a specific column print df.iloc[:4]
Its output is as follows −
A B C D 0 0.699435 0.256239 -1.270702 -0.645195 1 -0.685354 0.890791 -0.813012 0.631615 2 -0.783192 -0.531378 0.025070 0.230806 3 0.539042 -1.284314 0.826977 -0.026251
Example 2
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D']) # Integer slicing print df.iloc[:4] print df.iloc[1:5, 2:4]
Its output is as follows −
A B C D 0 0.699435 0.256239 -1.270702 -0.645195 1 -0.685354 0.890791 -0.813012 0.631615 2 -0.783192 -0.531378 0.025070 0.230806 3 0.539042 -1.284314 0.826977 -0.026251 C D 1 -0.813012 0.631615 2 0.025070 0.230806 3 0.826977 -0.026251 4 1.423332 1.130568
Example 3
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D']) # Slicing through list of values print df.iloc[[1, 3, 5], [1, 3]] print df.iloc[1:3, :] print df.iloc[:,1:3]
Its output is as follows −
B D 1 0.890791 0.631615 3 -1.284314 -0.026251 5 -0.512888 -0.518930 A B C D 1 -0.685354 0.890791 -0.813012 0.631615 2 -0.783192 -0.531378 0.025070 0.230806 B C 0 0.256239 -1.270702 1 0.890791 -0.813012 2 -0.531378 0.025070 3 -1.284314 0.826977 4 -0.460729 1.423332 5 -0.512888 0.581409 6 -1.204853 0.098060 7 -0.947857 0.641358
.ix()
Besides pure label based and integer based, Pandas provides a hybrid method for selections and subsetting the object using the .ix() operator.
Example 1
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D']) # Integer slicing print df.ix[:4]
Its output is as follows −
A B C D 0 0.699435 0.256239 -1.270702 -0.645195 1 -0.685354 0.890791 -0.813012 0.631615 2 -0.783192 -0.531378 0.025070 0.230806 3 0.539042 -1.284314 0.826977 -0.026251
Example 2
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D']) # Index slicing print df.ix[:,'A']
Its output is as follows −
0 0.699435 1 -0.685354 2 -0.783192 3 0.539042 4 -1.044209 5 -1.415411 6 1.062095 7 0.994204 Name: A, dtype: float64
Use of Notations
Getting values from the Pandas object with Multi-axes indexing uses the following notation −
Object | Indexers | Return Type |
---|---|---|
Series | s.loc[indexer] | Scalar value |
DataFrame | df.loc[row_index,col_index] | Series object |
Panel | p.loc[item_index,major_index, minor_index] | p.loc[item_index,major_index, minor_index] |
Note − .iloc() & .ix() applies the same indexing options and Return value.
Let us now see how each operation can be performed on the DataFrame object. We will use the basic indexing operator '[ ]' −
Example 1
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D']) print df['A']
Its output is as follows −
0 -0.478893 1 0.391931 2 0.336825 3 -1.055102 4 -0.165218 5 -0.328641 6 0.567721 7 -0.759399 Name: A, dtype: float64
Note − We can pass a list of values to [ ] to select those columns.
Example 2
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D']) print df[['A','B']]
Its output is as follows −
A B 0 -0.478893 -0.606311 1 0.391931 -0.949025 2 0.336825 0.093717 3 -1.055102 -0.012944 4 -0.165218 1.550310 5 -0.328641 -0.226363 6 0.567721 -0.312585 7 -0.759399 -0.372696
Example 3
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D']) print df[2:2]
Its output is as follows −
Columns: [A, B, C, D] Index: []
Attribute Access
Columns can be selected using the attribute operator '.'.
Example
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D']) print df.A
Its output is as follows −
0 -0.478893 1 0.391931 2 0.336825 3 -1.055102 4 -0.165218 5 -0.328641 6 0.567721 7 -0.759399 Name: A, dtype: float64