- Python Pandas Tutorial
- Python Pandas - Home
- Python Pandas - Introduction
- Python Pandas - Environment Setup
- Introduction to Data Structures
- Python Pandas - Series
- Python Pandas - DataFrame
- Python Pandas - Panel
- Python Pandas - Basic Functionality
- Descriptive Statistics
- Function Application
- Python Pandas - Reindexing
- Python Pandas - Iteration
- Python Pandas - Sorting
- Working with Text Data
- Options & Customization
- Indexing & Selecting Data
- Statistical Functions
- Python Pandas - Window Functions
- Python Pandas - Aggregations
- Python Pandas - Missing Data
- Python Pandas - GroupBy
- Python Pandas - Merging/Joining
- Python Pandas - Concatenation
- Python Pandas - Date Functionality
- Python Pandas - Timedelta
- Python Pandas - Categorical Data
- Python Pandas - Visualization
- Python Pandas - IO Tools
- Python Pandas - Sparse Data
- Python Pandas - Caveats & Gotchas
- Comparison with SQL
- Python Pandas Useful Resources
- Python Pandas - Quick Guide
- Python Pandas - Useful Resources
- Python Pandas - Discussion
Python Pandas - Date Functionality
Extending the Time series, Date functionalities play major role in financial data analysis. While working with Date data, we will frequently come across the following −
- Generating sequence of dates
- Convert the date series to different frequencies
Create a Range of Dates
Using the date.range() function by specifying the periods and the frequency, we can create the date series. By default, the frequency of range is Days.
import pandas as pd print pd.date_range('1/1/2011', periods=5)
Its output is as follows −
DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03', '2011-01-04', '2011-01-05'], dtype='datetime64[ns]', freq='D')
Change the Date Frequency
import pandas as pd print pd.date_range('1/1/2011', periods=5,freq='M')
Its output is as follows −
DatetimeIndex(['2011-01-31', '2011-02-28', '2011-03-31', '2011-04-30', '2011-05-31'], dtype='datetime64[ns]', freq='M')
bdate_range
bdate_range() stands for business date ranges. Unlike date_range(), it excludes Saturday and Sunday.
import pandas as pd print pd.date_range('1/1/2011', periods=5)
Its output is as follows −
DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03', '2011-01-04', '2011-01-05'], dtype='datetime64[ns]', freq='D')
Observe, after 3rd March, the date jumps to 6th march excluding 4th and 5th. Just check your calendar for the days.
Convenience functions like date_range and bdate_range utilize a variety of frequency aliases. The default frequency for date_range is a calendar day while the default for bdate_range is a business day.
import pandas as pd start = pd.datetime(2011, 1, 1) end = pd.datetime(2011, 1, 5) print pd.date_range(start, end)
Its output is as follows −
DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03', '2011-01-04', '2011-01-05'], dtype='datetime64[ns]', freq='D')
Offset Aliases
A number of string aliases are given to useful common time series frequencies. We will refer to these aliases as offset aliases.
Alias | Description | Alias | Description |
---|---|---|---|
B | business day frequency | BQS | business quarter start frequency |
D | calendar day frequency | A | annual(Year) end frequency |
W | weekly frequency | BA | business year end frequency |
M | month end frequency | BAS | business year start frequency |
SM | semi-month end frequency | BH | business hour frequency |
BM | business month end frequency | H | hourly frequency |
MS | month start frequency | T, min | minutely frequency |
SMS | SMS semi month start frequency | S | secondly frequency |
BMS | business month start frequency | L, ms | milliseconds |
Q | quarter end frequency | U, us | microseconds |
BQ | business quarter end frequency | N | nanoseconds |
QS | quarter start frequency |