- Python Basics
- Python - Home
- Python - Overview
- Python - History
- Python - Features
- Python vs C++
- Python - Hello World Program
- Python - Application Areas
- Python - Interpreter
- Python - Environment Setup
- Python - Virtual Environment
- Python - Basic Syntax
- Python - Variables
- Python - Data Types
- Python - Type Casting
- Python - Unicode System
- Python - Literals
- Python - Operators
- Python - Arithmetic Operators
- Python - Comparison Operators
- Python - Assignment Operators
- Python - Logical Operators
- Python - Bitwise Operators
- Python - Membership Operators
- Python - Identity Operators
- Python - Operator Precedence
- Python - Comments
- Python - User Input
- Python - Numbers
- Python - Booleans
- Python Control Statements
- Python - Control Flow
- Python - Decision Making
- Python - If Statement
- Python - If else
- Python - Nested If
- Python - Match-Case Statement
- Python - Loops
- Python - for Loops
- Python - for-else Loops
- Python - While Loops
- Python - break Statement
- Python - continue Statement
- Python - pass Statement
- Python - Nested Loops
- Python Functions & Modules
- Python - Functions
- Python - Default Arguments
- Python - Keyword Arguments
- Python - Keyword-Only Arguments
- Python - Positional Arguments
- Python - Positional-Only Arguments
- Python - Arbitrary Arguments
- Python - Variables Scope
- Python - Function Annotations
- Python - Modules
- Python - Built in Functions
- Python Strings
- Python - Strings
- Python - Slicing Strings
- Python - Modify Strings
- Python - String Concatenation
- Python - String Formatting
- Python - Escape Characters
- Python - String Methods
- Python - String Exercises
- Python Lists
- Python - Lists
- Python - Access List Items
- Python - Change List Items
- Python - Add List Items
- Python - Remove List Items
- Python - Loop Lists
- Python - List Comprehension
- Python - Sort Lists
- Python - Copy Lists
- Python - Join Lists
- Python - List Methods
- Python - List Exercises
- Python Tuples
- Python - Tuples
- Python - Access Tuple Items
- Python - Update Tuples
- Python - Unpack Tuples
- Python - Loop Tuples
- Python - Join Tuples
- Python - Tuple Methods
- Python - Tuple Exercises
- Python Sets
- Python - Sets
- Python - Access Set Items
- Python - Add Set Items
- Python - Remove Set Items
- Python - Loop Sets
- Python - Join Sets
- Python - Copy Sets
- Python - Set Operators
- Python - Set Methods
- Python - Set Exercises
- Python Dictionaries
- Python - Dictionaries
- Python - Access Dictionary Items
- Python - Change Dictionary Items
- Python - Add Dictionary Items
- Python - Remove Dictionary Items
- Python - Dictionary View Objects
- Python - Loop Dictionaries
- Python - Copy Dictionaries
- Python - Nested Dictionaries
- Python - Dictionary Methods
- Python - Dictionary Exercises
- Python Arrays
- Python - Arrays
- Python - Access Array Items
- Python - Add Array Items
- Python - Remove Array Items
- Python - Loop Arrays
- Python - Copy Arrays
- Python - Reverse Arrays
- Python - Sort Arrays
- Python - Join Arrays
- Python - Array Methods
- Python - Array Exercises
- Python File Handling
- Python - File Handling
- Python - Write to File
- Python - Read Files
- Python - Renaming and Deleting Files
- Python - Directories
- Python - File Methods
- Python - OS File/Directory Methods
- Python - OS Path Methods
- Object Oriented Programming
- Python - OOPs Concepts
- Python - Classes & Objects
- Python - Class Attributes
- Python - Class Methods
- Python - Static Methods
- Python - Constructors
- Python - Access Modifiers
- Python - Inheritance
- Python - Polymorphism
- Python - Method Overriding
- Python - Method Overloading
- Python - Dynamic Binding
- Python - Dynamic Typing
- Python - Abstraction
- Python - Encapsulation
- Python - Interfaces
- Python - Packages
- Python - Inner Classes
- Python - Anonymous Class and Objects
- Python - Singleton Class
- Python - Wrapper Classes
- Python - Enums
- Python - Reflection
- Python Errors & Exceptions
- Python - Syntax Errors
- Python - Exceptions
- Python - try-except Block
- Python - try-finally Block
- Python - Raising Exceptions
- Python - Exception Chaining
- Python - Nested try Block
- Python - User-defined Exception
- Python - Logging
- Python - Assertions
- Python - Built-in Exceptions
- Python Multithreading
- Python - Multithreading
- Python - Thread Life Cycle
- Python - Creating a Thread
- Python - Starting a Thread
- Python - Joining Threads
- Python - Naming Thread
- Python - Thread Scheduling
- Python - Thread Pools
- Python - Main Thread
- Python - Thread Priority
- Python - Daemon Threads
- Python - Synchronizing Threads
- Python Synchronization
- Python - Inter-thread Communication
- Python - Thread Deadlock
- Python - Interrupting a Thread
- Python Networking
- Python - Networking
- Python - Socket Programming
- Python - URL Processing
- Python - Generics
- Python Libraries
- NumPy Tutorial
- Pandas Tutorial
- SciPy Tutorial
- Matplotlib Tutorial
- Django Tutorial
- OpenCV Tutorial
- Python Miscellenous
- Python - Date & Time
- Python - Maths
- Python - Iterators
- Python - Generators
- Python - Closures
- Python - Decorators
- Python - Recursion
- Python - Reg Expressions
- Python - PIP
- Python - Database Access
- Python - Weak References
- Python - Serialization
- Python - Templating
- Python - Output Formatting
- Python - Performance Measurement
- Python - Data Compression
- Python - CGI Programming
- Python - XML Processing
- Python - GUI Programming
- Python - Command-Line Arguments
- Python - Docstrings
- Python - JSON
- Python - Sending Email
- Python - Further Extensions
- Python - Tools/Utilities
- Python - GUIs
- Python Useful Resources
- Python Compiler
- NumPy Compiler
- Matplotlib Compiler
- SciPy Compiler
- Python - Questions & Answers
- Python - Online Quiz
- Python - Programming Examples
- Python - Quick Guide
- Python - Useful Resources
- Python - Discussion
Python - Copy Dictionaries
Copy Dictionaries
Copying dictionaries in Python refers to creating a new dictionary that contains the same key-value pairs as the original dictionary.
We can copy dictionaries using various ways, depending on the requirements and the nature of the dictionary's values (whether they are mutable or immutable, nested or not).
Shallow Copy
When you perform a shallow copy, a new dictionary object is created, but it contains references to the same objects that the original dictionary references.
This is useful when you want to duplicate the structure of a dictionary without duplicating the nested objects it contains.
This can be done using the copy() method or the dict() function as shown below −
Example: Using the copy() Method
In the following example, we can see that changing the "age" in the shallow copy does not affect the original.
However, modifying the list in the shallow copy also affects the original because the list is a mutable object and only a reference is copied.
original_dict = {"name": "Alice", "age": 25, "skills": ["Python", "Data Science"]} shallow_copy = original_dict.copy() # Modifying the shallow copy shallow_copy["age"] = 26 shallow_copy["skills"].append("Machine Learning") print("Original dictionary:", original_dict) print("Shallow copy:", shallow_copy)
Following is the output of the above code −
Original dictionary: {'name': 'Alice', 'age': 25, 'skills': ['Python', 'Data Science', 'Machine Learning']} Shallow copy: {'name': 'Alice', 'age': 26, 'skills': ['Python', 'Data Science', 'Machine Learning']}
Example: Using the dict() Method
Similar to the copy() method, the dict() method creates a shallow copy as shown in the example below −
original_dict = {"name": "Bob", "age": 30, "skills": ["Java", "C++"]} shallow_copy = dict(original_dict) # Modifying the shallow copy shallow_copy["age"] = 31 shallow_copy["skills"].append("C#") print("Original dictionary:", original_dict) print("Shallow copy:", shallow_copy)
Output of the above code is as follows −
Original dictionary: {'name': 'Bob', 'age': 30, 'skills': ['Java', 'C++', 'C#']} Shallow copy: {'name': 'Bob', 'age': 31, 'skills': ['Java', 'C++', 'C#']}
Deep Copy
A deep copy creates a new dictionary and recursively copies all objects found in the original dictionary. This means that not only the dictionary itself but also all objects it contains (including nested dictionaries, lists, etc.) are copied. As a result, changes made to the deep copy do not affect the original dictionary and vice versa.
We can achieve this using the deepcopy() function in the copy module.
Example
We can see in the example below that the "age" value in the deep copy is changed, the "skills" list in the deep copy is modified (an item is appended) and the "education" dictionary in the deep copy is modified, all without affecting the original −
import copy original_dict = { "name": "Alice", "age": 25, "skills": ["Python", "Data Science"], "education": { "degree": "Bachelor's", "field": "Computer Science" } } # Creating a deep copy deep_copy = copy.deepcopy(original_dict) # Modifying the deep copy deep_copy["age"] = 26 deep_copy["skills"].append("Machine Learning") deep_copy["education"]["degree"] = "Master's" # Retrieving both dictionaries print("Original dictionary:", original_dict) print("Deep copy:", deep_copy)
This will produce the following output −
Original dictionary: {'name': 'Alice', 'age': 25, 'skills': ['Python', 'Data Science'], 'education': {'degree': "Bachelor's", 'field': 'Computer Science'}} Deep copy: {'name': 'Alice', 'age': 26, 'skills': ['Python', 'Data Science', 'Machine Learning'], 'education': {'degree': "Master's", 'field': 'Computer Science'}}
Copy Dictionaries Using copy() Method
Dictionaries cannot be copied directly by using the assignment operator (=), you can use the copy() method to create a shallow copy of a dictionary.
Syntax
Following is the basic syntax of the copy() method in Python −
new_dict = original_dict.copy()
Where, original_dict is the dictionary you want to copy.
Example
The following example demonstrates the creation of a shallow copy of a dictionary using the copy() method −
# Creating a dictionary dict1 = {"name": "Krishna", "age": "27", "doy": 1992} # Copying the dictionary dict2 = dict1.copy() # Printing both of the dictionaries print("dict1 :", dict1) print("dict2 :", dict2)
Output
We will get the output as shown below −
dict1 : {'name': 'Krishna', 'age': '27', 'doy': 1992} dict2 : {'name': 'Krishna', 'age': '27', 'doy': 1992}