- NumPy Tutorial
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy - Array Attributes
- NumPy - Array Creation Routines
- NumPy - Array from Existing Data
- Array From Numerical Ranges
- NumPy - Indexing & Slicing
- NumPy - Advanced Indexing
- NumPy - Broadcasting
- NumPy - Iterating Over Array
- NumPy - Array Manipulation
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Mathematical Functions
- NumPy - Arithmetic Operations
- NumPy - Statistical Functions
- Sort, Search & Counting Functions
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy - I/O with NumPy
- NumPy Useful Resources
- NumPy Compiler
- NumPy - Quick Guide
- NumPy - Useful Resources
- NumPy - Discussion
NumPy - Data Types
NumPy supports a much greater variety of numerical types than Python does. The following table shows different scalar data types defined in NumPy.
Sr.No. | Data Types & Description |
---|---|
1 | bool_ Boolean (True or False) stored as a byte |
2 | int_ Default integer type (same as C long; normally either int64 or int32) |
3 | intc Identical to C int (normally int32 or int64) |
4 | intp Integer used for indexing (same as C ssize_t; normally either int32 or int64) |
5 | int8 Byte (-128 to 127) |
6 | int16 Integer (-32768 to 32767) |
7 | int32 Integer (-2147483648 to 2147483647) |
8 | int64 Integer (-9223372036854775808 to 9223372036854775807) |
9 | uint8 Unsigned integer (0 to 255) |
10 | uint16 Unsigned integer (0 to 65535) |
11 | uint32 Unsigned integer (0 to 4294967295) |
12 | uint64 Unsigned integer (0 to 18446744073709551615) |
13 | float_ Shorthand for float64 |
14 | float16 Half precision float: sign bit, 5 bits exponent, 10 bits mantissa |
15 | float32 Single precision float: sign bit, 8 bits exponent, 23 bits mantissa |
16 | float64 Double precision float: sign bit, 11 bits exponent, 52 bits mantissa |
17 | complex_ Shorthand for complex128 |
18 | complex64 Complex number, represented by two 32-bit floats (real and imaginary components) |
19 | complex128 Complex number, represented by two 64-bit floats (real and imaginary components) |
NumPy numerical types are instances of dtype (data-type) objects, each having unique characteristics. The dtypes are available as np.bool_, np.float32, etc.
Data Type Objects (dtype)
A data type object describes interpretation of fixed block of memory corresponding to an array, depending on the following aspects −
Type of data (integer, float or Python object)
Size of data
Byte order (little-endian or big-endian)
In case of structured type, the names of fields, data type of each field and part of the memory block taken by each field.
If data type is a subarray, its shape and data type
The byte order is decided by prefixing '<' or '>' to data type. '<' means that encoding is little-endian (least significant is stored in smallest address). '>' means that encoding is big-endian (most significant byte is stored in smallest address).
A dtype object is constructed using the following syntax −
numpy.dtype(object, align, copy)
The parameters are −
Object − To be converted to data type object
Align − If true, adds padding to the field to make it similar to C-struct
Copy − Makes a new copy of dtype object. If false, the result is reference to builtin data type object
Example 1
# using array-scalar type import numpy as np dt = np.dtype(np.int32) print dt
The output is as follows −
int32
Example 2
#int8, int16, int32, int64 can be replaced by equivalent string 'i1', 'i2','i4', etc. import numpy as np dt = np.dtype('i4') print dt
The output is as follows −
int32
Example 3
# using endian notation import numpy as np dt = np.dtype('>i4') print dt
The output is as follows −
>i4
The following examples show the use of structured data type. Here, the field name and the corresponding scalar data type is to be declared.
Example 4
# first create structured data type import numpy as np dt = np.dtype([('age',np.int8)]) print dt
The output is as follows −
[('age', 'i1')]
Example 5
# now apply it to ndarray object import numpy as np dt = np.dtype([('age',np.int8)]) a = np.array([(10,),(20,),(30,)], dtype = dt) print a
The output is as follows −
[(10,) (20,) (30,)]
Example 6
# file name can be used to access content of age column import numpy as np dt = np.dtype([('age',np.int8)]) a = np.array([(10,),(20,),(30,)], dtype = dt) print a['age']
The output is as follows −
[10 20 30]
Example 7
The following examples define a structured data type called student with a string field 'name', an integer field 'age' and a float field 'marks'. This dtype is applied to ndarray object.
import numpy as np student = np.dtype([('name','S20'), ('age', 'i1'), ('marks', 'f4')]) print student
The output is as follows −
[('name', 'S20'), ('age', 'i1'), ('marks', '<f4')])
Example 8
import numpy as np student = np.dtype([('name','S20'), ('age', 'i1'), ('marks', 'f4')]) a = np.array([('abc', 21, 50),('xyz', 18, 75)], dtype = student) print a
The output is as follows −
[('abc', 21, 50.0), ('xyz', 18, 75.0)]
Each built-in data type has a character code that uniquely identifies it.
'b' − boolean
'i' − (signed) integer
'u' − unsigned integer
'f' − floating-point
'c' − complex-floating point
'm' − timedelta
'M' − datetime
'O' − (Python) objects
'S', 'a' − (byte-)string
'U' − Unicode
'V' − raw data (void)