- Matplotlib Basics
- Matplotlib - Home
- Matplotlib - Introduction
- Matplotlib - Vs Seaborn
- Matplotlib - Environment Setup
- Matplotlib - Anaconda distribution
- Matplotlib - Jupyter Notebook
- Matplotlib - Pyplot API
- Matplotlib - Simple Plot
- Matplotlib - Saving Figures
- Matplotlib - Markers
- Matplotlib - Figures
- Matplotlib - Styles
- Matplotlib - Legends
- Matplotlib - Colors
- Matplotlib - Colormaps
- Matplotlib - Colormap Normalization
- Matplotlib - Choosing Colormaps
- Matplotlib - Colorbars
- Matplotlib - Text
- Matplotlib - Text properties
- Matplotlib - Subplot Titles
- Matplotlib - Images
- Matplotlib - Image Masking
- Matplotlib - Annotations
- Matplotlib - Arrows
- Matplotlib - Fonts
- Matplotlib - What are Fonts?
- Setting Font Properties Globally
- Matplotlib - Font Indexing
- Matplotlib - Font Properties
- Matplotlib - Scales
- Matplotlib - Linear and Logarthmic Scales
- Matplotlib - Symmetrical Logarithmic and Logit Scales
- Matplotlib - LaTeX
- Matplotlib - What is LaTeX?
- Matplotlib - LaTeX for Mathematical Expressions
- Matplotlib - LaTeX Text Formatting in Annotations
- Matplotlib - PostScript
- Enabling LaTex Rendering in Annotations
- Matplotlib - Mathematical Expressions
- Matplotlib - Animations
- Matplotlib - Artists
- Matplotlib - Styling with Cycler
- Matplotlib - Paths
- Matplotlib - Path Effects
- Matplotlib - Transforms
- Matplotlib - Ticks and Tick Labels
- Matplotlib - Radian Ticks
- Matplotlib - Dateticks
- Matplotlib - Tick Formatters
- Matplotlib - Tick Locators
- Matplotlib - Basic Units
- Matplotlib - Autoscaling
- Matplotlib - Reverse Axes
- Matplotlib - Logarithmic Axes
- Matplotlib - Symlog
- Matplotlib - Unit Handling
- Matplotlib - Ellipse with Units
- Matplotlib - Spines
- Matplotlib - Axis Ranges
- Matplotlib - Axis Scales
- Matplotlib - Axis Ticks
- Matplotlib - Formatting Axes
- Matplotlib - Axes Class
- Matplotlib - Twin Axes
- Matplotlib - Figure Class
- Matplotlib - Multiplots
- Matplotlib - Grids
- Matplotlib - Object-oriented Interface
- Matplotlib - PyLab module
- Matplotlib - Subplots() Function
- Matplotlib - Subplot2grid() Function
- Matplotlib - Anchored Artists
- Matplotlib - Manual Contour
- Matplotlib - Coords Report
- Matplotlib - AGG filter
- Matplotlib - Ribbon Box
- Matplotlib - Fill Spiral
- Matplotlib - Findobj Demo
- Matplotlib - Hyperlinks
- Matplotlib - Image Thumbnail
- Matplotlib - Plotting with Keywords
- Matplotlib - Create Logo
- Matplotlib - Multipage PDF
- Matplotlib - Multiprocessing
- Matplotlib - Print Stdout
- Matplotlib - Compound Path
- Matplotlib - Sankey Class
- Matplotlib - MRI with EEG
- Matplotlib - Stylesheets
- Matplotlib - Background Colors
- Matplotlib - Basemap
- Matplotlib Event Handling
- Matplotlib - Event Handling
- Matplotlib - Close Event
- Matplotlib - Mouse Move
- Matplotlib - Click Events
- Matplotlib - Scroll Event
- Matplotlib - Keypress Event
- Matplotlib - Pick Event
- Matplotlib - Looking Glass
- Matplotlib - Path Editor
- Matplotlib - Poly Editor
- Matplotlib - Timers
- Matplotlib - Viewlims
- Matplotlib - Zoom Window
- Matplotlib Plotting
- Matplotlib - Bar Graphs
- Matplotlib - Histogram
- Matplotlib - Pie Chart
- Matplotlib - Scatter Plot
- Matplotlib - Box Plot
- Matplotlib - Violin Plot
- Matplotlib - Contour Plot
- Matplotlib - 3D Plotting
- Matplotlib - 3D Contours
- Matplotlib - 3D Wireframe Plot
- Matplotlib - 3D Surface Plot
- Matplotlib - Quiver Plot
- Matplotlib Useful Resources
- Matplotlib - Quick Guide
- Matplotlib - Useful Resources
- Matplotlib - Discussion
Matplotlib - Tick Formatters
Understanding Ticks and Tick Labels
In general graphs and plotting, ticks are the small lines that show the scale of x and y-axes, providing a clear representation of the value associated with each tick. Tick labels are the textual or numeric annotations associated with each tick on an axis, providing a clear representation of the value associated with each tick.
The following image represents the ticks and tick labels on a graph −
In this context Tick formatters, controls the appearance of the tick labels, specifying how the tick notations are displayed. This customization can include formatting options like specifying decimal places, adding units, using scientific notation, or applying date and time formats.
Tick Formatters in Matplotlib
Matplotlib allows users to customize tick properties, including locations and labels, through the matplotlib.ticker module. This module contains classes for configuring both tick locating and formatting. It provides a range of generic tick locators and formatters, as well as domain-specific custom ones.
To set the tick format, Matplotlib allows ypu to use either −
- a format string,
- a function,
- or an instance of a Formatter subclass.
Applying Tick Formatters
Matplotlib provides a straightforward way to configure tick formatters using the set_major_formatter and set_minor_formatter functions. These functions enable you to set the major and minor tick label formats for a specific axis.
The syntax is as follows −
Syntax
ax.xaxis.set_major_formatter(xmajor_formatter) ax.xaxis.set_minor_formatter(xminor_formatter) ax.yaxis.set_major_formatter(ymajor_formatter) ax.yaxis.set_minor_formatter(yminor_formatter)
String Formatting
String Formatting is a technique, which implicitly creates the StrMethodFormatter method, allowing you to use new-style format strings (str.format).
Example
In this example, the x-axis tick labels will be formatted using a string.
import matplotlib.pyplot as plt from matplotlib import ticker # Create a sample plot fig, ax = plt.subplots(figsize=(7,4)) ax.plot([1, 2, 3, 4], [10, 20, 15, 20]) # Set up the major formatter for the x-axis ax.xaxis.set_major_formatter('{x} km') ax.set_title('String Formatting') plt.show()
Output
On executing the above code we will get the following output −
Function Based Formatting
This approach provides a flexible way to customize tick labels using a user-defined function. The function should accept two inputs: x (the tick value) and pos (the position of the tick on the axis). Then it returns a string representing the desired tick label corresponding to the given inputs.
Example
This example demonstrates using a function to format x-axis tick labels.
from matplotlib.ticker import FuncFormatter from matplotlib import pyplot as plt def format_tick_labels(x, pos): return '{0:.2f}%'.format(x) # sample data values = range(20) # Create a plot f, ax = plt.subplots(figsize=(7,4)) ax.plot(values) # Set up the major formatter for the x-axis using a function ax.xaxis.set_major_formatter(FuncFormatter(format_tick_labels)) ax.set_title('Function Based Formatting') plt.show()
Output
On executing the above code we will get the following output −
Formatter Object Formatting
Formatter object Formatting allows for advanced customization of tick labels using specific formatter subclass. Some common Formatter subclasses include −
- NullFormatter − This object ensures that no labels are displayed on the ticks.
- StrMethodFormatter − This object utilizes the string str.format method for formatting tick labels.
- FormatStrFormatter − This object employs %-style formatting for tick labels.
- FuncFormatter − It define labels through a custum function.
- FixedFormatter − It allows users to set label strings explicitly.
- ScalarFormatter − It is the default formatter for scalars.
- PercentFormatter − It format labels as percentages.
Example 1
The following example demonstrates how different Formatter Objects can be applied to the x-axis to achieve different formatting effects on tick labels.
from matplotlib import ticker from matplotlib import pyplot as plt # Create a plot fig, axs = plt.subplots(5, 1, figsize=(7, 5)) fig.suptitle('Formatter Object Formatting', fontsize=16) # Set up the formatter axs[0].xaxis.set_major_formatter(ticker.NullFormatter()) axs[0].set_title('NullFormatter()') # Add other formatters axs[1].xaxis.set_major_formatter(ticker.StrMethodFormatter("{x:.3f}")) axs[1].set_title('StrMethodFormatter("{x:.3f}")') axs[2].xaxis.set_major_formatter(ticker.FormatStrFormatter("#%d")) axs[2].set_title('FormatStrFormatter("#%d")') axs[3].xaxis.set_major_formatter(ticker.ScalarFormatter(useMathText=True)) axs[3].set_title('ScalarFormatter(useMathText=True)') axs[4].xaxis.set_major_formatter(ticker.PercentFormatter(xmax=5)) axs[4].set_title('PercentFormatter(xmax=5)') plt.tight_layout() plt.show()
Output
On executing the above code we will get the following output -
Example 2
This example demonstrates how to format tick labels on both the x-axis and y-axis using a string formatting method (StrMethodFormatter) to display the numbers with comma separators.
import matplotlib.pyplot as plt from matplotlib.ticker import StrMethodFormatter # Data x = [10110, 20110, 40110, 6700] y = [20110, 10110, 30110, 9700] # Create plot fig, ax = plt.subplots(figsize=(7, 4)) ax.plot(x, y) # Format tick labels for both x-axis and y-axis to include comma separators ax.yaxis.set_major_formatter(StrMethodFormatter('{x:,}')) ax.xaxis.set_major_formatter(StrMethodFormatter('{x:,}')) # Show plot plt.show()
Output
On executing the above code you will get the following output −