- Matplotlib Basics
- Matplotlib - Home
- Matplotlib - Introduction
- Matplotlib - Vs Seaborn
- Matplotlib - Environment Setup
- Matplotlib - Anaconda distribution
- Matplotlib - Jupyter Notebook
- Matplotlib - Pyplot API
- Matplotlib - Simple Plot
- Matplotlib - Saving Figures
- Matplotlib - Markers
- Matplotlib - Figures
- Matplotlib - Styles
- Matplotlib - Legends
- Matplotlib - Colors
- Matplotlib - Colormaps
- Matplotlib - Colormap Normalization
- Matplotlib - Choosing Colormaps
- Matplotlib - Colorbars
- Matplotlib - Text
- Matplotlib - Text properties
- Matplotlib - Subplot Titles
- Matplotlib - Images
- Matplotlib - Image Masking
- Matplotlib - Annotations
- Matplotlib - Arrows
- Matplotlib - Fonts
- Matplotlib - What are Fonts?
- Setting Font Properties Globally
- Matplotlib - Font Indexing
- Matplotlib - Font Properties
- Matplotlib - Scales
- Matplotlib - Linear and Logarthmic Scales
- Matplotlib - Symmetrical Logarithmic and Logit Scales
- Matplotlib - LaTeX
- Matplotlib - What is LaTeX?
- Matplotlib - LaTeX for Mathematical Expressions
- Matplotlib - LaTeX Text Formatting in Annotations
- Matplotlib - PostScript
- Enabling LaTex Rendering in Annotations
- Matplotlib - Mathematical Expressions
- Matplotlib - Animations
- Matplotlib - Artists
- Matplotlib - Styling with Cycler
- Matplotlib - Paths
- Matplotlib - Path Effects
- Matplotlib - Transforms
- Matplotlib - Ticks and Tick Labels
- Matplotlib - Radian Ticks
- Matplotlib - Dateticks
- Matplotlib - Tick Formatters
- Matplotlib - Tick Locators
- Matplotlib - Basic Units
- Matplotlib - Autoscaling
- Matplotlib - Reverse Axes
- Matplotlib - Logarithmic Axes
- Matplotlib - Symlog
- Matplotlib - Unit Handling
- Matplotlib - Ellipse with Units
- Matplotlib - Spines
- Matplotlib - Axis Ranges
- Matplotlib - Axis Scales
- Matplotlib - Axis Ticks
- Matplotlib - Formatting Axes
- Matplotlib - Axes Class
- Matplotlib - Twin Axes
- Matplotlib - Figure Class
- Matplotlib - Multiplots
- Matplotlib - Grids
- Matplotlib - Object-oriented Interface
- Matplotlib - PyLab module
- Matplotlib - Subplots() Function
- Matplotlib - Subplot2grid() Function
- Matplotlib - Anchored Artists
- Matplotlib - Manual Contour
- Matplotlib - Coords Report
- Matplotlib - AGG filter
- Matplotlib - Ribbon Box
- Matplotlib - Fill Spiral
- Matplotlib - Findobj Demo
- Matplotlib - Hyperlinks
- Matplotlib - Image Thumbnail
- Matplotlib - Plotting with Keywords
- Matplotlib - Create Logo
- Matplotlib - Multipage PDF
- Matplotlib - Multiprocessing
- Matplotlib - Print Stdout
- Matplotlib - Compound Path
- Matplotlib - Sankey Class
- Matplotlib - MRI with EEG
- Matplotlib - Stylesheets
- Matplotlib - Background Colors
- Matplotlib - Basemap
- Matplotlib Event Handling
- Matplotlib - Event Handling
- Matplotlib - Close Event
- Matplotlib - Mouse Move
- Matplotlib - Click Events
- Matplotlib - Scroll Event
- Matplotlib - Keypress Event
- Matplotlib - Pick Event
- Matplotlib - Looking Glass
- Matplotlib - Path Editor
- Matplotlib - Poly Editor
- Matplotlib - Timers
- Matplotlib - Viewlims
- Matplotlib - Zoom Window
- Matplotlib Plotting
- Matplotlib - Bar Graphs
- Matplotlib - Histogram
- Matplotlib - Pie Chart
- Matplotlib - Scatter Plot
- Matplotlib - Box Plot
- Matplotlib - Violin Plot
- Matplotlib - Contour Plot
- Matplotlib - 3D Plotting
- Matplotlib - 3D Contours
- Matplotlib - 3D Wireframe Plot
- Matplotlib - 3D Surface Plot
- Matplotlib - Quiver Plot
- Matplotlib Useful Resources
- Matplotlib - Quick Guide
- Matplotlib - Useful Resources
- Matplotlib - Discussion
Matplotlib - LaTeX Text Formatting in Annotations
What is Text formatting in LaTex?
In LaTeX text formatting in annotations within figures, graphs or plots such as those created. Matplotlib library can be accomplished using a subset of LaTeX commands within the annotation text. Annotations help add explanatory labels, descriptions or notes to elements within a graph.
When working with tools like Matplotlib that support LaTeX for text rendering in annotations we can use a subset of LaTeX commands to format the text within these annotations. This allows for the incorporation of styled text, mathematical expressions and special formatting within annotations.
LaTeX Formatting in Annotations Includes
The below are the LaTex formatting in Annotations. Let’s see them one by one.
Mathematical Expressions − The mathematical expressions are given as fractions, Greek letters, superscripts and subscripts using LaTeX math mode.
Text Styling − The text styling includes bold, italics, underline or different font sizes using LaTeX commands like \textbf{}, \textit{}, \underline{} and font size commands.
Special Characters − Escaping special characters like dollar signs, percentage signs or underscores using LaTeX escape sequences.
Alignment − Control over alignment, though limited, using
\begin{flushleft}...\end{flushleft}, \begin{center}...\end{center}, \begin{flushright}...\end{flushright}.
In the above we have gone through different styling formats available in LaTex, now let’s see the text formatting in Annotations using LaTex.
LaTeX Text Formatting in Annotations
The below are the various text formatting in Annotations using LaTex.
Basic Text Formatting
LaTeX commands for basic text formatting can be used in annotations. The following are some.
Bold − To make text bold
\textbf{Bold Text}
Italics − To make text italic
\textit{Italic Text}
Underline − To add an underline to text
\underline{Underlined Text}
Font Size − LaTeX provides different font size commands such as \tiny, \small, \large, \Large, \huge, \Huge
Annotations with Bold text using LaTex
Here in this example we are using the LaText text formatting in the Annotations for making the text to look bold on a plot.
Example
import matplotlib.pyplot as plt # Create a simple plot x = [1, 2, 3, 4] y = [2, 5, 7, 10] plt.plot(x, y, marker='o', linestyle='-') # Add an annotation with LaTeX text formatting plt.annotate(r'\textbf{Max Value}', xy=(x[y.index(max(y))], max(y)), xytext=(2.5, 8), arrowprops=dict(facecolor='black', shrink=0.05), fontsize=12, color='blue', bbox=dict(boxstyle='round,pad=0.3', edgecolor='blue', facecolor='lightblue')) # Set axis labels and title plt.xlabel('X-axis') plt.ylabel('Y-axis') plt.title('Example Plot with LaTeX Annotation') # Show the plot plt.show()
Output
On executing the above code you will get the following output −
Mathematical Notation
In LaTeX text formatting within mathematical notation involves using commands and syntax within math mode to stylize text elements while expressing mathematical content. It allows for the integration of text formatting features within mathematical expressions or equations.
Basic Text Formatting within Mathematical Notation
The basic text formatting within the mathematical notations are as follows.
Bold Text
This text formatting renders the enclosed text in bold within a mathematical expression.
\mathbf{Bold Text}
Italic Text
The Italic text displays the enclosed text in italics within a mathematical expression.
\textit{Italic Text}
Sans-serif Text
This renders the enclosed text in sans-serif font style within math mode.
\textsf{Sans-serif Text}
Typewriter Text
This displays the enclosed text in a typewriter or monospaced font within math mode.
\texttt{Typewriter Text}
Important points to remember
- Text formatting within mathematical notation can be achieved using \text{} or specific formatting commands within math mode.
- Some formatting commands may not work in all math environments or may need additional packages or configurations.
- LaTeX offers a variety of text formatting options that can be applied within mathematical expressions to enhance the presentation of text-based content.
- By utilizing text formatting commands within mathematical notation LaTeX allows for the integration of styled text elements within mathematical expressions by aiding in the clarity and visual appeal of mathematical content.
Subscripts and Superscripts
In LaTeX subscripts and superscripts are used to position text or symbols below subscripts or above superscripts the baseline of a mathematical expression. They're commonly employed to denote indices, exponents or special annotations within mathematical notation.
Subscripts
Subscripts are used to create a subscript in LaTeX we can use the underscore `_`.
Superscripts
Superscripts to create a superscript in LaTeX we can use the caret `^`.
Subscripts and Superscripts usage in Annotation of a plot
In this example we are using the subscripts and superscripts usage in annotations of a plot by using the LaTex.
Example
import matplotlib.pyplot as plt # Generating some data points x = [1, 2, 3, 4] y = [2, 5, 7, 10] plt.plot(x, y, 'o-', label='Data') # Annotating a point with a subscript and a superscript plt.annotate(r'$\mathrm{Point}_{\mathrm{max}}^{(4, 10)}$', xy=(x[y.index(max(y))], max(y)), xytext=(3, 8), arrowprops=dict(facecolor='black', arrowstyle='->'), fontsize=12, color='red') plt.xlabel('X-axis') plt.ylabel('Y-axis') plt.title('Example Plot with Annotation') plt.legend() plt.show()
Output
On executing the above code you will get the following output −
Important points to remember
- Subscripts and superscripts can be used independently or combined within LaTeX mathematical notation.
- They are crucial for denoting variables, indices, exponents and other related mathematical annotations.
- LaTeX automatically handles the positioning and sizing of subscripts and superscripts based on the context and surrounding elements within the mathematical expression.
- By using subscripts and superscripts in LaTeX we can precisely express mathematical formulas and notations, improving clarity and readability within mathematical content.
Combining Text and Math
Combining text and math in annotations using LaTeX involves embedding both regular text and mathematical expressions within annotations in a coherent and visually effective manner.
Combining Text and Math using Latex on a plot
Here in this example we are combining the text and math in annotations by using the LaTex.
Example
import matplotlib.pyplot as plt # Generating some data points x = [1, 2, 3, 4] y = [2, 5, 7, 10] plt.plot(x, y, 'o-', label='Data') # Annotating a point with combined text and math in LaTeX plt.annotate(r'$\frac{dx}{dt} = \alpha \cdot x(t) + \beta$ is the differential equation', xy=(x[2], y[2]), xytext=(2, 6), arrowprops=dict(facecolor='black', arrowstyle='->'), fontsize=12, color='blue') plt.xlabel('X-axis') plt.ylabel('Y-axis') plt.title('Example Plot with Annotation by Latex') plt.legend() plt.show()
Output
On executing the above code you will get the following output −
Text Color and Font Styles
In LaTeX annotations within Matplotlib we can set text color and font styles using LaTeX commands to enhance the visual appearance of the annotations.
Text Color
To set text color within a LaTeX annotation we can use LaTeX color commands like
\textcolor{color_name}{text}
Font styles
The following are the different font styles applied on an annotation of a plot.
Bold Text − To display text in bold by using the command \textbf{}.
Italics − To display the text in italic style we can use \textit{}.
Underline − To underline the text we use \underline{}.
Combined Usage of text and font styles on annotations
In this example we are using the LaTex for changing the text color and applying the defined style to the annotations of a plot.
Example
import matplotlib.pyplot as plt # Generating some data points x = [1, 2, 3, 4] y = [2, 5, 7, 10] plt.plot(x, y, 'o-', label='Data') # Annotating a point with different text color and font style plt.annotate(r'\mathbf{\textcolor{red}{Max value:}} \ \textit{\textcolor{blue}{y_{\text{max}} = 10}}', xy=(x[y.index(max(y))], max(y)), xytext=(3, 8), arrowprops=dict(facecolor='black', arrowstyle='->'), fontsize=12) plt.xlabel('X-axis') plt.ylabel('Y-axis') plt.title('Example Plot with Annotation of color and font style') plt.legend() plt.show()
Output
On executing the above code you will get the following output −
Important Points to be noted
- Ensure that LaTeX is correctly interpreted within Matplotlib annotations by using the `r` prefix before the string.
- Adjust the colors, font styles and other formatting parameters as needed to suit our visualization requirements.
- By leveraging LaTeX commands for text color and font styles within Matplotlib annotations we can create visually appealing and informative annotations in our plots. Adjusting these attributes helps in highlighting important information and improving the overall aesthetics of the visualization.
Finally we can say by using LaTeX within Matplotlib's annotations we can enrich our graphs and figures with formatted text, mathematical notations and stylized labels by allowing for clearer and more informative visualizations.
Bold font weight for LaTeX axes label
In this example we are setting the LaTex axes label as Bold font weight.
Example
import numpy as np from matplotlib import pyplot as plt, font_manager as fm plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True plt.rcParams["font.fantasy"] = "Comic Sans MS" x = np.array([1, 2, 3, 4]) y = np.exp(x) ax1 = plt.subplot() ax1.set_xticks(x) ax1.set_yticks(y) ax1.plot(x, y, c="red") ax1.set_xticklabels([r"$\bf{one}$", r"$\bf{two}$", r"$\bf{three}$", r"$\bf{four}$"], rotation=45) ax1.set_yticklabels([r"$\bf{:.2f}$".format(y[0]), r"$\bf{:.2f}$".format(y[1]), r"$\bf{:.2f}$".format(y[2]), r"$\bf{:.2f}$".format(y[3])], rotation=45) plt.tight_layout() plt.show()
Output
On executing the above code you will get the following output −
Format a float using matplotlib's LaTeX formatter
Here in this example we are formatting a float using matplotlib's Latex formatter.
Example
import numpy as np from matplotlib import pyplot as plt # Set the figures size plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True # x and y data points x = np.linspace(-5, 5, 100) y = x**3/3 # Plot the data points plt.plot(x, y) # Fill the area between the curve plt.fill_between(x, y) # LaTex representation plt.title("$area=\int_a^b{x^2dx}$=83.3") # Display the plot plt.show()
Output
On executing the above code you will get the following output −
Obtain the same font in Matplotlib output as in LaTex output
Here in this example we are formatting a float using matplotlib's Latex formatter.
Example
import numpy as np from matplotlib import pyplot as plt # Set the figures size plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True # x and y data points x = np.linspace(-5, 5, 100) y = x**3/3 # Plot the data points plt.plot(x, y) # Fill the area between the curve plt.fill_between(x, y) # LaTex representation plt.title("$area=\int_a^b{x^2dx}$=83.3") # Display the plot plt.show()
Output
On executing the above code you will get the following output −