- Matplotlib Basics
- Matplotlib - Home
- Matplotlib - Introduction
- Matplotlib - Vs Seaborn
- Matplotlib - Environment Setup
- Matplotlib - Anaconda distribution
- Matplotlib - Jupyter Notebook
- Matplotlib - Pyplot API
- Matplotlib - Simple Plot
- Matplotlib - Saving Figures
- Matplotlib - Markers
- Matplotlib - Figures
- Matplotlib - Styles
- Matplotlib - Legends
- Matplotlib - Colors
- Matplotlib - Colormaps
- Matplotlib - Colormap Normalization
- Matplotlib - Choosing Colormaps
- Matplotlib - Colorbars
- Matplotlib - Text
- Matplotlib - Text properties
- Matplotlib - Subplot Titles
- Matplotlib - Images
- Matplotlib - Image Masking
- Matplotlib - Annotations
- Matplotlib - Arrows
- Matplotlib - Fonts
- Matplotlib - What are Fonts?
- Setting Font Properties Globally
- Matplotlib - Font Indexing
- Matplotlib - Font Properties
- Matplotlib - Scales
- Matplotlib - Linear and Logarthmic Scales
- Matplotlib - Symmetrical Logarithmic and Logit Scales
- Matplotlib - LaTeX
- Matplotlib - What is LaTeX?
- Matplotlib - LaTeX for Mathematical Expressions
- Matplotlib - LaTeX Text Formatting in Annotations
- Matplotlib - PostScript
- Enabling LaTex Rendering in Annotations
- Matplotlib - Mathematical Expressions
- Matplotlib - Animations
- Matplotlib - Artists
- Matplotlib - Styling with Cycler
- Matplotlib - Paths
- Matplotlib - Path Effects
- Matplotlib - Transforms
- Matplotlib - Ticks and Tick Labels
- Matplotlib - Radian Ticks
- Matplotlib - Dateticks
- Matplotlib - Tick Formatters
- Matplotlib - Tick Locators
- Matplotlib - Basic Units
- Matplotlib - Autoscaling
- Matplotlib - Reverse Axes
- Matplotlib - Logarithmic Axes
- Matplotlib - Symlog
- Matplotlib - Unit Handling
- Matplotlib - Ellipse with Units
- Matplotlib - Spines
- Matplotlib - Axis Ranges
- Matplotlib - Axis Scales
- Matplotlib - Axis Ticks
- Matplotlib - Formatting Axes
- Matplotlib - Axes Class
- Matplotlib - Twin Axes
- Matplotlib - Figure Class
- Matplotlib - Multiplots
- Matplotlib - Grids
- Matplotlib - Object-oriented Interface
- Matplotlib - PyLab module
- Matplotlib - Subplots() Function
- Matplotlib - Subplot2grid() Function
- Matplotlib - Anchored Artists
- Matplotlib - Manual Contour
- Matplotlib - Coords Report
- Matplotlib - AGG filter
- Matplotlib - Ribbon Box
- Matplotlib - Fill Spiral
- Matplotlib - Findobj Demo
- Matplotlib - Hyperlinks
- Matplotlib - Image Thumbnail
- Matplotlib - Plotting with Keywords
- Matplotlib - Create Logo
- Matplotlib - Multipage PDF
- Matplotlib - Multiprocessing
- Matplotlib - Print Stdout
- Matplotlib - Compound Path
- Matplotlib - Sankey Class
- Matplotlib - MRI with EEG
- Matplotlib - Stylesheets
- Matplotlib - Background Colors
- Matplotlib - Basemap
- Matplotlib Event Handling
- Matplotlib - Event Handling
- Matplotlib - Close Event
- Matplotlib - Mouse Move
- Matplotlib - Click Events
- Matplotlib - Scroll Event
- Matplotlib - Keypress Event
- Matplotlib - Pick Event
- Matplotlib - Looking Glass
- Matplotlib - Path Editor
- Matplotlib - Poly Editor
- Matplotlib - Timers
- Matplotlib - Viewlims
- Matplotlib - Zoom Window
- Matplotlib Plotting
- Matplotlib - Bar Graphs
- Matplotlib - Histogram
- Matplotlib - Pie Chart
- Matplotlib - Scatter Plot
- Matplotlib - Box Plot
- Matplotlib - Violin Plot
- Matplotlib - Contour Plot
- Matplotlib - 3D Plotting
- Matplotlib - 3D Contours
- Matplotlib - 3D Wireframe Plot
- Matplotlib - 3D Surface Plot
- Matplotlib - Quiver Plot
- Matplotlib Useful Resources
- Matplotlib - Quick Guide
- Matplotlib - Useful Resources
- Matplotlib - Discussion
Matplotlib - Enabling LaTex Rendering in Annotations
What is LaTex Rendering?
LaTeX rendering refers to the process of converting LaTeX markup language which contains typesetting instructions and commands, into formatted output. This output is typically high-quality documents, mathematical formulas, scientific papers or technical reports with precise and consistent typography.
LaTeX rendering is widely used in academia, scientific research, technical documentation and publishing due to its robust typesetting capabilities and its ability to produce professional-looking documents.
Key Aspects of LaTeX Rendering
Typesetting − LaTeX is renowned for its superior typesetting capabilities ensuring professional-grade document formatting for academic and technical content.
Mathematical Formulas − LaTeX is extensively used for its exceptional support in typesetting complex mathematical equations by making it a preferred choice for academic and scientific publications.
Markup Language − LaTeX uses a markup language in which, where users write documents with plain text and include commands to specify formatting, structure and content.
Compilation − The LaTeX source code needs to be compiled using a LaTeX compiler such as pdflatex, xelatex, lualatex. During compilation the compiler interprets the LaTeX commands and generates the final output in various formats like PDF, DVI or PostScript.
Customization − LaTeX allows users to create custom styles, templates and packages by enabling precise control over document formatting and layout.
Benefits of LaTeX Rendering
Quality and Consistency − LaTeX ensures high-quality and consistent document formatting across various platforms and devices.
Mathematical Typesetting − It excels in handling complex mathematical notation and making it indispensable for scientific and mathematical content.
Cross-Platform Compatibility − LaTeX documents can be easily compiled and viewed on different operating systems.
Version Control − Plain text-based source files facilitate version control systems by making collaboration and document history management easier.
Enabling Latex Rendering
To enable LaTeX rendering for creating documents, equations or annotations we typically need the following.
LaTeX Installation
Install a LaTeX distribution like TeX Live, MiKTeX or MacTeX which includes the necessary LaTeX compiler and packages.
Text Editor
Choose a text editor or an integrated development environment (IDE) that supports LaTeX such as TeXstudio, TeXworks, Overleaf or editors like Sublime Text, VS Code or Atom with LaTeX plugins/extensions.
Write LaTeX Code
Create a .tex file and write LaTeX code using the appropriate commands and syntax to structure our document which include equations or format text.
Compilation
Use the LaTeX compiler to compile the .tex file into the desired output format such as PDF, DVI, PS. Run the appropriate command in the terminal or use the integrated features of our chosen editor/IDE.
For example in a terminal we might run the following code.
Example
pdflatex your_file.tex
Or within an editor/IDE there's often a Build or Compile button to initiate the compilation process.
LaTeX Rendering in Matplotlib for Annotations
For Matplotlib annotations using LaTeX for text formatting within plots we have to ensure the below.
Matplotlib Support − Matplotlib supports LaTeX for annotations by using LaTeX syntax within plt.annotate() or similar functions.
LaTeX Installation − Ensure we have a working LaTeX installation on our system that Matplotlib can access for rendering LaTeX text within annotations.
Correct Syntax − Use the correct LaTeX syntax r'$...$' within Matplotlib functions for annotations to render the desired LaTeX-formatted text.
By following the above mentioned steps we can enable LaTeX rendering for various purposes such as document creation, mathematical notation or annotations in visualization libraries like Matplotlib.
Enabling LaTex Rendering
In this example we are going to use the LaTex rendering in the annotations of the plot.
Example
import matplotlib.pyplot as plt # Sample data x = [1, 2, 3, 4] y = [2, 5, 7, 10] plt.plot(x, y, 'o-', label='Data') # Annotating a point with LaTeX-rendered text plt.annotate(r'$\sum_{i=1}^{4} y_i$', # LaTeX expression within the annotation xy=(x[2], y[2]), # Coordinates of the annotation point xytext=(2.5, 6), # Text position arrowprops=dict(facecolor='black', arrowstyle='->'), fontsize=12, color='green') # Labeling axes and title plt.xlabel('X-axis') plt.ylabel('Y-axis') plt.title('Plot with LaTeX rendering in Annotation') plt.legend() plt.show()
Output
On executing the above code you will get the following output −
Example
Here this is another example of using the LaTex rendering in annotations of a plot.
import matplotlib.pyplot as plt # Generating some data points x = [1, 2, 3, 4] y = [2, 5, 7, 10] plt.plot(x, y, 'o-', label='Data') # Annotating a point with LaTeX rendering plt.annotate(r'\textbf{Max Value}', xy=(x[y.index(max(y))], max(y)), xytext=(2.5, 8), arrowprops=dict(facecolor='black', shrink=0.05), fontsize=12, color='white', bbox=dict(boxstyle='round,pad=0.3', edgecolor='red', facecolor='green')) plt.xlabel('X-axis') plt.ylabel('Y-axis') plt.title('Example Plot with LaTeX Annotation') plt.legend() plt.show()
Output
On executing the above code you will get the following output −
Change the axis tick font in a Matplotlib plot when rendering using LaTex
Here this is the example to change the axis tick font in matplotlib when rendering using LaTeX
Example
import numpy as np import matplotlib.pyplot as plt plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True x = np.array([1, 2, 3, 4]) y = np.exp(x) ax1 = plt.subplot() ax1.set_xticks(x) ax1.set_yticks(y) ax1.plot(x, y, c="red") ax1.set_xticklabels([r"$\bf{one}$", r"$\bf{two}$", r"$\bf{three}$", r"$\bf{four}$"], rotation=45) ax1.set_yticklabels([r"$\bf{:.2f}$".format(y[0]), r"$\bf{:.2f}$".format(y[1]), r"$\bf{:.2f}$".format(y[2]), r"$\bf{:.2f}$".format(y[3])], rotation=45) plt.tight_layout() plt.show()
Output
On executing the above code you will get the following output −