Java Tutorial
- Java - Home
- Java - Overview
- Java - History
- Java - Features
- Java vs C++
- Java Virtual Machine (JVM)
- Java - JDK vs JRE vs JVM
- Java - Hello World Program
- Java - Environment Setup
- Java - Basic Syntax
- Java - Variable Types
- Java - Data Types
- Java - Type Casting
- Java - Unicode System
- Java - Basic Operators
- Java - Comments
Java Control Statements
- Java - Loop Control
- Java - Decision Making
- Java - If-else
- Java - Switch
- Java - For Loops
- Java - For-Each Loops
- Java - While Loops
- Java - do-while Loops
- Java - Break
- Java - Continue
Object Oriented Programming
- Java - OOPs Concepts
- Java - Object & Classes
- Java - Class Attributes
- Java - Class Methods
- Java - Methods
- Java - Variables Scope
- Java - Constructors
- Java - Access Modifiers
- Java - Inheritance
- Java - Aggregation
- Java - Polymorphism
- Java - Overriding
- Java - Method Overloading
- Java - Dynamic Binding
- Java - Static Binding
- Java - Instance Initializer Block
- Java - Abstraction
- Java - Encapsulation
- Java - Interfaces
- Java - Packages
- Java - Inner Classes
- Java - Static Class
- Java - Anonymous Class
- Java - Singleton Class
- Java - Wrapper Classes
- Java - Enums
- Java - Enum Constructor
- Java - Enum Strings
Java Built-in Classes
Java File Handling
- Java - Files
- Java - Create a File
- Java - Write to File
- Java - Read Files
- Java - Delete Files
- Java - Directories
- Java - I/O Streams
Java Error & Exceptions
- Java - Exceptions
- Java - try-catch Block
- Java - try-with-resources
- Java - Multi-catch Block
- Java - Nested try Block
- Java - Finally Block
- Java - throw Exception
- Java - Exception Propagation
- Java - Built-in Exceptions
- Java - Custom Exception
Java Multithreading
- Java - Multithreading
- Java - Thread Life Cycle
- Java - Creating a Thread
- Java - Starting a Thread
- Java - Joining Threads
- Java - Naming Thread
- Java - Thread Scheduler
- Java - Thread Pools
- Java - Main Thread
- Java - Thread Priority
- Java - Daemon Threads
- Java - Thread Group
- Java - Shutdown Hook
Java Synchronization
- Java - Synchronization
- Java - Block Synchronization
- Java - Static Synchronization
- Java - Inter-thread Communication
- Java - Thread Deadlock
- Java - Interrupting a Thread
- Java - Thread Control
- Java - Reentrant Monitor
Java Networking
- Java - Networking
- Java - Socket Programming
- Java - URL Processing
- Java - URL Class
- Java - URLConnection Class
- Java - HttpURLConnection Class
- Java - Socket Class
- Java - Generics
Java Collections
Java Interfaces
- Java - List Interface
- Java - Queue Interface
- Java - Map Interface
- Java - SortedMap Interface
- Java - Set Interface
- Java - SortedSet Interface
Java Data Structures
Java Collections Algorithms
Advanced Java
- Java - Command-Line Arguments
- Java - Lambda Expressions
- Java - Sending Email
- Java - Applet Basics
- Java - Javadoc Comments
- Java - Autoboxing and Unboxing
- Java - File Mismatch Method
- Java - REPL (JShell)
- Java - Multi-Release Jar Files
- Java - Private Interface Methods
- Java - Inner Class Diamond Operator
- Java - Multiresolution Image API
- Java - Collection Factory Methods
- Java - Module System
- Java - Nashorn JavaScript
- Java - Optional Class
- Java - Method References
- Java - Functional Interfaces
- Java - Default Methods
- Java - Base64 Encode Decode
- Java - Switch Expressions
- Java - Teeing Collectors
- Java - Microbenchmark
- Java - Text Blocks
- Java - Dynamic CDS archive
- Java - Z Garbage Collector (ZGC)
- Java - Null Pointer Exception
- Java - Packaging Tools
- Java - Sealed Classes
- Java - Record Classes
- Java - Hidden Classes
- Java - Pattern Matching
- Java - Compact Number Formatting
- Java - Garbage Collection
- Java - JIT Compiler
Java Miscellaneous
- Java - Recursion
- Java - Regular Expressions
- Java - Serialization
- Java - Strings
- Java - Process API Improvements
- Java - Stream API Improvements
- Java - Enhanced @Deprecated Annotation
- Java - CompletableFuture API Improvements
- Java - Streams
- Java - Datetime Api
- Java 8 - New Features
- Java 9 - New Features
- Java 10 - New Features
- Java 11 - New Features
- Java 12 - New Features
- Java 13 - New Features
- Java 14 - New Features
- Java 15 - New Features
- Java 16 - New Features
Java APIs & Frameworks
Java Class References
- Java - Scanner Class
- Java - Arrays Class
- Java - Strings
- Java - Date & Time
- Java - ArrayList
- Java - Vector Class
- Java - Stack Class
- Java - PriorityQueue
- Java - LinkedList
- Java - ArrayDeque
- Java - HashMap
- Java - LinkedHashMap
- Java - WeakHashMap
- Java - EnumMap
- Java - TreeMap
- Java - The IdentityHashMap Class
- Java - HashSet
- Java - EnumSet
- Java - LinkedHashSet
- Java - TreeSet
- Java - BitSet Class
- Java - Dictionary
- Java - Hashtable
- Java - Properties
- Java - Collection Interface
- Java - Array Methods
Java Useful Resources
Java - Static Synchronization
Synchronization is a way that establishes cooperation between multiple threads trying to access shared resources. It is necessary for reliable thread interaction and is done using the 'synchronized' keyword. Here, threads are small sub processes of a big operation. In this article, we are going to learn static synchronization and how they manage threads so that they can work efficiently.
Multithreading
Multithreading is a feature of Java programming language that allows us to perform multiple operations simultaneously. In it, the operation gets divided into multiple smaller parts called a thread. Each thread performs one independent task without affecting the other thread’s performance. The main benefit of multithreading is the optimal use of resources like CPU and it boosts the execution time of allocated operations.
Synchronization
The threads are executed in an asynchronous manner therefore, it is impossible to predict how they are going to interact. Sometimes, several threads may try to access a single resource, then a problem arises because it might create a faulty result of the allocated task. At this time, Synchronization comes into the picture and ensures that a single thread can access the given resource at one time. This is possible because of the lock object that guards the synchronized region. When a thread enters that region, the lock gets assigned to it and it releases the lock after executing its task. Till the resources are busy other threads wait in a queue for their turn.
Static Synchronization in Java
When we use this type of synchronization then, if a thread is in the static synchronized region, all other threads trying to access this region will be blocked. Since static methods belong to the class therefore, static synchronization applies class level lock.
Syntax of Static Synchronization
static synchronized returnType nameOfMethod( Type parameters) { // code }
Here returnType may be void or any primitive data type. parameters contains name of the variable followed by datatype.
Multithreading Without Static Synchronization
Here is a simple example which may or may not print counter value in sequence and every time we run it, it produces a different result based on CPU availability to a thread.
Example of Multithreading Without Static Synchronization
package com.tutorialspoint; class PrintDemo { public static void printCount() { try { for(int i = 5; i > 0; i--) { Thread.sleep(50); System.out.println("Counter --- " + i ); } } catch (Exception e) { System.out.println("Thread interrupted."); } } } class ThreadDemo extends Thread { private Thread t; private String threadName; ThreadDemo( String name) { threadName = name; } public void run() { PrintDemo.printCount(); System.out.println("Thread " + threadName + " exiting."); } public void start () { System.out.println("Starting " + threadName ); if (t == null) { t = new Thread (this, threadName); t.start (); } } } public class TestThread { public static void main(String args[]) { ThreadDemo t1 = new ThreadDemo( "Thread - 1 " ); ThreadDemo t2 = new ThreadDemo( "Thread - 2 " ); t1.start(); t2.start(); // wait for threads to end try { t1.join(); t2.join(); } catch ( Exception e) { System.out.println("Interrupted"); } } }
This produces a different result every time you run this program −
Output
Starting Thread - 1 Starting Thread - 2 Counter --- 5 Counter --- 5 Counter --- 4 Counter --- 4 Counter --- 3 Counter --- 3 Counter --- 2 Counter --- 2 Counter --- 1 Counter --- 1 Thread Thread - 1 exiting. Thread Thread - 2 exiting.
Multithreading With Static Synchronization
Here is the same example which prints counter value in sequence and every time we run it, it produces the same result. W've put synchronized keyword over a method this time so that complete method is locked as per the object during method execution.
Example of Multithreading With Static Synchronization
package com.tutorialspoint; class PrintDemo { public static synchronized void printCount() { try { for(int i = 5; i > 0; i--) { Thread.sleep(50); System.out.println("Counter --- " + i ); } } catch (Exception e) { System.out.println("Thread interrupted."); } } } class ThreadDemo extends Thread { private Thread t; private String threadName; ThreadDemo( String name) { threadName = name; } public void run() { PrintDemo.printCount(); System.out.println("Thread " + threadName + " exiting."); } public void start () { System.out.println("Starting " + threadName ); if (t == null) { t = new Thread (this, threadName); t.start (); } } } public class TestThread { public static void main(String args[]) { ThreadDemo t1 = new ThreadDemo( "Thread - 1 " ); ThreadDemo t2 = new ThreadDemo( "Thread - 2 " ); t1.start(); t2.start(); // wait for threads to end try { t1.join(); t2.join(); } catch ( Exception e) { System.out.println("Interrupted"); } } }
This produces following result every time you run this program −
Output
Starting Thread - 1 Starting Thread - 2 Counter --- 5 Counter --- 4 Counter --- 3 Counter --- 2 Counter --- 1 Thread Thread - 1 exiting. Counter --- 5 Counter --- 4 Counter --- 3 Counter --- 2 Counter --- 1 Thread Thread - 2 exiting.