Java Tutorial
- Java - Home
- Java - Overview
- Java - History
- Java - Features
- Java vs C++
- Java Virtual Machine (JVM)
- Java - JDK vs JRE vs JVM
- Java - Hello World Program
- Java - Environment Setup
- Java - Basic Syntax
- Java - Variable Types
- Java - Data Types
- Java - Type Casting
- Java - Unicode System
- Java - Basic Operators
- Java - Comments
Java Control Statements
- Java - Loop Control
- Java - Decision Making
- Java - If-else
- Java - Switch
- Java - For Loops
- Java - For-Each Loops
- Java - While Loops
- Java - do-while Loops
- Java - Break
- Java - Continue
Object Oriented Programming
- Java - OOPs Concepts
- Java - Object & Classes
- Java - Class Attributes
- Java - Class Methods
- Java - Methods
- Java - Variables Scope
- Java - Constructors
- Java - Access Modifiers
- Java - Inheritance
- Java - Aggregation
- Java - Polymorphism
- Java - Overriding
- Java - Method Overloading
- Java - Dynamic Binding
- Java - Static Binding
- Java - Instance Initializer Block
- Java - Abstraction
- Java - Encapsulation
- Java - Interfaces
- Java - Packages
- Java - Inner Classes
- Java - Static Class
- Java - Anonymous Class
- Java - Singleton Class
- Java - Wrapper Classes
- Java - Enums
- Java - Enum Constructor
- Java - Enum Strings
Java Built-in Classes
Java File Handling
- Java - Files
- Java - Create a File
- Java - Write to File
- Java - Read Files
- Java - Delete Files
- Java - Directories
- Java - I/O Streams
Java Error & Exceptions
- Java - Exceptions
- Java - try-catch Block
- Java - try-with-resources
- Java - Multi-catch Block
- Java - Nested try Block
- Java - Finally Block
- Java - throw Exception
- Java - Exception Propagation
- Java - Built-in Exceptions
- Java - Custom Exception
Java Multithreading
- Java - Multithreading
- Java - Thread Life Cycle
- Java - Creating a Thread
- Java - Starting a Thread
- Java - Joining Threads
- Java - Naming Thread
- Java - Thread Scheduler
- Java - Thread Pools
- Java - Main Thread
- Java - Thread Priority
- Java - Daemon Threads
- Java - Thread Group
- Java - Shutdown Hook
Java Synchronization
- Java - Synchronization
- Java - Block Synchronization
- Java - Static Synchronization
- Java - Inter-thread Communication
- Java - Thread Deadlock
- Java - Interrupting a Thread
- Java - Thread Control
- Java - Reentrant Monitor
Java Networking
- Java - Networking
- Java - Socket Programming
- Java - URL Processing
- Java - URL Class
- Java - URLConnection Class
- Java - HttpURLConnection Class
- Java - Socket Class
- Java - Generics
Java Collections
Java Interfaces
- Java - List Interface
- Java - Queue Interface
- Java - Map Interface
- Java - SortedMap Interface
- Java - Set Interface
- Java - SortedSet Interface
Java Data Structures
Java Collections Algorithms
Advanced Java
- Java - Command-Line Arguments
- Java - Lambda Expressions
- Java - Sending Email
- Java - Applet Basics
- Java - Javadoc Comments
- Java - Autoboxing and Unboxing
- Java - File Mismatch Method
- Java - REPL (JShell)
- Java - Multi-Release Jar Files
- Java - Private Interface Methods
- Java - Inner Class Diamond Operator
- Java - Multiresolution Image API
- Java - Collection Factory Methods
- Java - Module System
- Java - Nashorn JavaScript
- Java - Optional Class
- Java - Method References
- Java - Functional Interfaces
- Java - Default Methods
- Java - Base64 Encode Decode
- Java - Switch Expressions
- Java - Teeing Collectors
- Java - Microbenchmark
- Java - Text Blocks
- Java - Dynamic CDS archive
- Java - Z Garbage Collector (ZGC)
- Java - Null Pointer Exception
- Java - Packaging Tools
- Java - Sealed Classes
- Java - Record Classes
- Java - Hidden Classes
- Java - Pattern Matching
- Java - Compact Number Formatting
- Java - Garbage Collection
- Java - JIT Compiler
Java Miscellaneous
- Java - Recursion
- Java - Regular Expressions
- Java - Serialization
- Java - Strings
- Java - Process API Improvements
- Java - Stream API Improvements
- Java - Enhanced @Deprecated Annotation
- Java - CompletableFuture API Improvements
- Java - Streams
- Java - Datetime Api
- Java 8 - New Features
- Java 9 - New Features
- Java 10 - New Features
- Java 11 - New Features
- Java 12 - New Features
- Java 13 - New Features
- Java 14 - New Features
- Java 15 - New Features
- Java 16 - New Features
Java APIs & Frameworks
Java Class References
- Java - Scanner Class
- Java - Arrays Class
- Java - Strings
- Java - Date & Time
- Java - ArrayList
- Java - Vector Class
- Java - Stack Class
- Java - PriorityQueue
- Java - LinkedList
- Java - ArrayDeque
- Java - HashMap
- Java - LinkedHashMap
- Java - WeakHashMap
- Java - EnumMap
- Java - TreeMap
- Java - The IdentityHashMap Class
- Java - HashSet
- Java - EnumSet
- Java - LinkedHashSet
- Java - TreeSet
- Java - BitSet Class
- Java - Dictionary
- Java - Hashtable
- Java - Properties
- Java - Collection Interface
- Java - Array Methods
Java Useful Resources
Java - Overriding
In the previous chapter, we talked about superclasses and subclasses. If a class inherits a method from its superclass, then there is a chance to override the method provided that it is not marked final.
Benefit of Overriding in Java
The benefit of overriding is: ability to define a behavior that's specific to the subclass type, which means a subclass can implement a parent class method based on its requirement.
In object-oriented terms, overriding means to override the functionality of an existing method.
Java Method Overriding
Method overriding allows us to achieve run-time polymorphism and is used for writing specific definitions of a subclass method that is already defined in the superclass.
The method is superclass and overridden method in the subclass should have the same declaration signature such as parameters list, type, and return type.
Usage of Java Method Overriding
Following are the two important usages of method overriding in Java:
- Method overriding is used for achieving run-time polymorphism.
- Method overriding is used for writing specific definition of a subclass method (this method is known as the overridden method).
Example of Method Overriding in Java
Let us look at an example.
class Animal { public void move() { System.out.println("Animals can move"); } } class Dog extends Animal { public void move() { System.out.println("Dogs can walk and run"); } } public class TestDog { public static void main(String args[]) { Animal a = new Animal(); // Animal reference and object Animal b = new Dog(); // Animal reference but Dog object a.move(); // runs the method in Animal class b.move(); // runs the method in Dog class } }
Output
Animals can move Dogs can walk and run
In the above example, you can see that even though b is a type of Animal it runs the move method in the Dog class. The reason for this is: In compile time, the check is made on the reference type. However, in the runtime, JVM figures out the object type and would run the method that belongs to that particular object.
Therefore, in the above example, the program will compile properly since Animal class has the method move. Then, at the runtime, it runs the method specific for that object.
Consider the following example −
Example
class Animal { public void move() { System.out.println("Animals can move"); } } class Dog extends Animal { public void move() { System.out.println("Dogs can walk and run"); } public void bark() { System.out.println("Dogs can bark"); } } public class TestDog { public static void main(String args[]) { Animal a = new Animal(); // Animal reference and object Animal b = new Dog(); // Animal reference but Dog object a.move(); // runs the method in Animal class b.move(); // runs the method in Dog class b.bark(); } }
Output
TestDog.java:26: error: cannot find symbol b.bark(); ^ symbol: method bark() location: variable b of type Animal 1 error
This program will throw a compile time error since b's reference type Animal doesn't have a method by the name of bark.
Rules for Method Overriding
The argument list should be exactly the same as that of the overridden method.
The return type should be the same or a subtype of the return type declared in the original overridden method in the superclass.
The access level cannot be more restrictive than the overridden method's access level. For example: If the superclass method is declared public then the overridding method in the sub class cannot be either private or protected.
Instance methods can be overridden only if they are inherited by the subclass.
A method declared final cannot be overridden.
A method declared static cannot be overridden but can be re-declared.
If a method cannot be inherited, then it cannot be overridden.
A subclass within the same package as the instance's superclass can override any superclass method that is not declared private or final.
A subclass in a different package can only override the non-final methods declared public or protected.
An overriding method can throw any uncheck exceptions, regardless of whether the overridden method throws exceptions or not. However, the overriding method should not throw checked exceptions that are new or broader than the ones declared by the overridden method. The overriding method can throw narrower or fewer exceptions than the overridden method.
Constructors cannot be overridden.
Java Method and Constructor Overriding
In Java, each class has a different name and the constructor's name is the same as the class name. Thus, we cannot override a constructor as they cannot have the same name.
Java Method Overriding: Using the super Keyword
When invoking a superclass version of an overridden method the super keyword is used.
Example: Using the super Keyword
class Animal { public void move() { System.out.println("Animals can move"); } } class Dog extends Animal { public void move() { super.move(); // invokes the super class method System.out.println("Dogs can walk and run"); } } public class TestDog { public static void main(String args[]) { Animal b = new Dog(); // Animal reference but Dog object b.move(); // runs the method in Dog class } }
Output
Animals can move Dogs can walk and run