- Statistics Tutorial
- Home
- Adjusted R-Squared
- Analysis of Variance
- Arithmetic Mean
- Arithmetic Median
- Arithmetic Mode
- Arithmetic Range
- Bar Graph
- Best Point Estimation
- Beta Distribution
- Binomial Distribution
- Black-Scholes model
- Boxplots
- Central limit theorem
- Chebyshev's Theorem
- Chi-squared Distribution
- Chi Squared table
- Circular Permutation
- Cluster sampling
- Cohen's kappa coefficient
- Combination
- Combination with replacement
- Comparing plots
- Continuous Uniform Distribution
- Continuous Series Arithmetic Mean
- Continuous Series Arithmetic Median
- Continuous Series Arithmetic Mode
- Cumulative Frequency
- Co-efficient of Variation
- Correlation Co-efficient
- Cumulative plots
- Cumulative Poisson Distribution
- Data collection
- Data collection - Questionaire Designing
- Data collection - Observation
- Data collection - Case Study Method
- Data Patterns
- Deciles Statistics
- Discrete Series Arithmetic Mean
- Discrete Series Arithmetic Median
- Discrete Series Arithmetic Mode
- Dot Plot
- Exponential distribution
- F distribution
- F Test Table
- Factorial
- Frequency Distribution
- Gamma Distribution
- Geometric Mean
- Geometric Probability Distribution
- Goodness of Fit
- Grand Mean
- Gumbel Distribution
- Harmonic Mean
- Harmonic Number
- Harmonic Resonance Frequency
- Histograms
- Hypergeometric Distribution
- Hypothesis testing
- Individual Series Arithmetic Mean
- Individual Series Arithmetic Median
- Individual Series Arithmetic Mode
- Interval Estimation
- Inverse Gamma Distribution
- Kolmogorov Smirnov Test
- Kurtosis
- Laplace Distribution
- Linear regression
- Log Gamma Distribution
- Logistic Regression
- Mcnemar Test
- Mean Deviation
- Means Difference
- Multinomial Distribution
- Negative Binomial Distribution
- Normal Distribution
- Odd and Even Permutation
- One Proportion Z Test
- Outlier Function
- Permutation
- Permutation with Replacement
- Pie Chart
- Poisson Distribution
- Pooled Variance (r)
- Power Calculator
- Probability
- Probability Additive Theorem
- Probability Multiplecative Theorem
- Probability Bayes Theorem
- Probability Density Function
- Process Capability (Cp) & Process Performance (Pp)
- Process Sigma
- Quadratic Regression Equation
- Qualitative Data Vs Quantitative Data
- Quartile Deviation
- Range Rule of Thumb
- Rayleigh Distribution
- Regression Intercept Confidence Interval
- Relative Standard Deviation
- Reliability Coefficient
- Required Sample Size
- Residual analysis
- Residual sum of squares
- Root Mean Square
- Sample planning
- Sampling methods
- Scatterplots
- Shannon Wiener Diversity Index
- Signal to Noise Ratio
- Simple random sampling
- Skewness
- Standard Deviation
- Standard Error ( SE )
- Standard normal table
- Statistical Significance
- Statistics Formulas
- Statistics Notation
- Stem and Leaf Plot
- Stratified sampling
- Student T Test
- Sum of Square
- T-Distribution Table
- Ti 83 Exponential Regression
- Transformations
- Trimmed Mean
- Type I & II Error
- Variance
- Venn Diagram
- Weak Law of Large Numbers
- Z table
- Statistics Useful Resources
- Statistics - Discussion
Statistics - Harmonic Mean
What is Harmonic Mean?
Harmonic Mean is also a mathematical average but is limited in its application. It is generally used to find average of variables that are expressed as a ratio of two different measuring units e. g. speed is measured in km/hr or miles/sec etc.
Weighted Harmonic Mean
Formula
$H.M. = \frac{W}{\sum (\frac{W}{X})}$
Where −
${H.M.}$ = Harmonic Mean
${W}$ = Weight
${X}$ = Variable value
Example
Problem Statement:
Find the weighted H.M. of the items 4, 7,12,19,25 with weights 1, 2,1,1,1 respectively.
Solution:
${X}$ | ${W}$ | $\frac{W}{X}$ |
---|---|---|
4 | 1 | 0.2500 |
7 | 2 | 0.2857 |
12 | 1 | 0.0833 |
19 | 1 | 0.0526 |
25 | 1 | 0.0400 |
$\sum W$ | $\sum \frac{W}{X}$= 0.7116 |
Based on the above mentioned formula, Harmonic Mean $G.M.$ will be:
∴ Weighted H.M = 8.4317
We're going to discuss methods to compute the Harmonic Mean for three types of series:
Individual Data Series
When data is given on individual basis. Following is an example of individual series:
Items | 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 |
---|
Discrete Data Series
When data is given alongwith their frequencies. Following is an example of discrete series:
Items | 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 |
---|---|---|---|---|---|---|---|---|
Frequency | 2 | 5 | 1 | 3 | 12 | 0 | 5 | 7 |
Continuous Data Series
When data is given based on ranges alongwith their frequencies. Following is an example of continous series:
Items | 0-5 | 5-10 | 10-20 | 20-30 | 30-40 |
---|---|---|---|---|---|
Frequency | 2 | 5 | 1 | 3 | 12 |