- Statistics Tutorial
- Home
- Adjusted R-Squared
- Analysis of Variance
- Arithmetic Mean
- Arithmetic Median
- Arithmetic Mode
- Arithmetic Range
- Bar Graph
- Best Point Estimation
- Beta Distribution
- Binomial Distribution
- Black-Scholes model
- Boxplots
- Central limit theorem
- Chebyshev's Theorem
- Chi-squared Distribution
- Chi Squared table
- Circular Permutation
- Cluster sampling
- Cohen's kappa coefficient
- Combination
- Combination with replacement
- Comparing plots
- Continuous Uniform Distribution
- Continuous Series Arithmetic Mean
- Continuous Series Arithmetic Median
- Continuous Series Arithmetic Mode
- Cumulative Frequency
- Co-efficient of Variation
- Correlation Co-efficient
- Cumulative plots
- Cumulative Poisson Distribution
- Data collection
- Data collection - Questionaire Designing
- Data collection - Observation
- Data collection - Case Study Method
- Data Patterns
- Deciles Statistics
- Discrete Series Arithmetic Mean
- Discrete Series Arithmetic Median
- Discrete Series Arithmetic Mode
- Dot Plot
- Exponential distribution
- F distribution
- F Test Table
- Factorial
- Frequency Distribution
- Gamma Distribution
- Geometric Mean
- Geometric Probability Distribution
- Goodness of Fit
- Grand Mean
- Gumbel Distribution
- Harmonic Mean
- Harmonic Number
- Harmonic Resonance Frequency
- Histograms
- Hypergeometric Distribution
- Hypothesis testing
- Individual Series Arithmetic Mean
- Individual Series Arithmetic Median
- Individual Series Arithmetic Mode
- Interval Estimation
- Inverse Gamma Distribution
- Kolmogorov Smirnov Test
- Kurtosis
- Laplace Distribution
- Linear regression
- Log Gamma Distribution
- Logistic Regression
- Mcnemar Test
- Mean Deviation
- Means Difference
- Multinomial Distribution
- Negative Binomial Distribution
- Normal Distribution
- Odd and Even Permutation
- One Proportion Z Test
- Outlier Function
- Permutation
- Permutation with Replacement
- Pie Chart
- Poisson Distribution
- Pooled Variance (r)
- Power Calculator
- Probability
- Probability Additive Theorem
- Probability Multiplecative Theorem
- Probability Bayes Theorem
- Probability Density Function
- Process Capability (Cp) & Process Performance (Pp)
- Process Sigma
- Quadratic Regression Equation
- Qualitative Data Vs Quantitative Data
- Quartile Deviation
- Range Rule of Thumb
- Rayleigh Distribution
- Regression Intercept Confidence Interval
- Relative Standard Deviation
- Reliability Coefficient
- Required Sample Size
- Residual analysis
- Residual sum of squares
- Root Mean Square
- Sample planning
- Sampling methods
- Scatterplots
- Shannon Wiener Diversity Index
- Signal to Noise Ratio
- Simple random sampling
- Skewness
- Standard Deviation
- Standard Error ( SE )
- Standard normal table
- Statistical Significance
- Statistics Formulas
- Statistics Notation
- Stem and Leaf Plot
- Stratified sampling
- Student T Test
- Sum of Square
- T-Distribution Table
- Ti 83 Exponential Regression
- Transformations
- Trimmed Mean
- Type I & II Error
- Variance
- Venn Diagram
- Weak Law of Large Numbers
- Z table
- Statistics Useful Resources
- Statistics - Discussion
Statistics - Frequency Distribution
Frequency distribution is a table that displays the frequency of various outcomes in a sample. Each entry in the table contains the frequency or count of the occurrences of values within a particular group or interval, and in this way, the table summarizes the distribution of values in the sample.
Example
Problem Statement:
Constructing a frequency distribution table of a survey was taken on Maple Avenue. In each of 20 homes, people were asked how many cars were registered to their households. The results were recorded as follows:
1 | 2 | 1 | 0 | 3 | 4 | 0 | 1 | 1 | 1 | 2 | 2 | 3 | 2 | 3 | 2 | 1 | 4 | 0 | 0 |
Solution:
Steps to be followed for present this data in a frequency distribution table.
Divide the results (x) into intervals, and then count the number of results in each interval. In this case, the intervals would be the number of households with no car (0), one car (1), two cars (2) and so forth.
Make a table with separate columns for the interval numbers (the number of cars per household), the tallied results, and the frequency of results in each interval. Label these columns Number of cars, Tally and Frequency.
Read the list of data from left to right and place a tally mark in the appropriate row. For example, the first result is a 1, so place a tally mark in the row beside where 1 appears in the interval column (Number of cars). The next result is a 2, so place a tally mark in the row beside the 2, and so on. When you reach your fifth tally mark, draw a tally line through the preceding four marks to make your final frequency calculations easier to read.
Add up the number of tally marks in each row and record them in the final column entitled Frequency.
Your frequency distribution table for this exercise should look like this:
Frequency table for the number of cars registered in each household | ||
---|---|---|
Number of cars (x) | Tally | Frequency (f) |
0 | ${\lvert\lvert\lvert\lvert}$ | 4 |
1 | ${\require{cancel} \cancel{\lvert\lvert\lvert\lvert} \lvert}$ | 6 |
2 | ${\cancel{\lvert\lvert\lvert\lvert}}$ | 5 |
3 | ${\lvert\lvert\lvert}$ | 3 |
4 | ${\lvert\lvert}$ | 3 |
By looking at this frequency distribution table quickly, we can see that out of 20 households surveyed, 4 households had no cars, 6 households had 1 car.