Big Data Analytics - Core Deliverables



Big data analytics entails processing and analysing large and diverse datasets to discover hidden patterns, correlations, insights, and other valuable information. As mentioned in the big data life cycle, some core deliverables of big data analytics are mentioned in below image −

BDA Core Deliverables

Machine Learning Implementation

This could be a classification algorithm, a regression model or a segmentation model.

Machine Learning Implementation

Recommending System

The objective is to develop a system that can recommend options based on user behaviour. For example – on Netflix, based on users' ratings for a particular movie/web series/show, related movies, web series, and shows are recommended.

Dashboard

Business normally needs tools to visualize aggregated data. A dashboard is a graphical representation of data which can be filtered as per users' needs and results are reflected on screen.

BDA Dashboard

For example, a sales dashboard of a company may contain filter options to visualise sales nation-wise, state-wise district-wise, zone-wise or sales product etc.

Insights and Patterns Identification

Big data analytics identifies trends, patterns, and correlations in data that can be used to make more informed decisions. These insights could be about customer behaviour, market trends, or operational inefficiencies.

Ad-Hoc Analysis

Ad-hoc analysis in big data analytics is a process of analysing data on the fly or spontaneously to answer specific, immediate queries or resolve ad-hoc inquiries. Unlike traditional analysis, which relies on predefined queries or structured reporting, ad hoc analysis allows users to explore data interactively, without the requirement for predefined queries or reports.

Predictive Analytics

Big data analytics can forecast future trends, behaviours, and occurrences by analysing previous data. Predictive analytics helps organisations to anticipate customer needs, estimate demand, optimise resources, and manage risks.

Data Visualization

Big data analytics entails presenting complex data in visual forms like charts, graphs, and dashboards. Data visualisation allows stakeholders to better grasp and analyse the data insights graphically.

Optimization and Efficiency Improvement

Big data analytics enables organisations to optimise processes, operations, and resources by identifying areas for improvement and inefficiencies. This could include optimising supply chain logistics, streamlining manufacturing processes, or improving marketing strategies.

Personalization and Targeting

Big data analytics allows organisations to personalise their products, services, and marketing activities based on individual preferences and behaviour by analysing massive amounts of customer data. This personalised strategy increases customer satisfaction and marketing ROI.

Risk Management and Fraud Detection

Big data analytics can detect abnormalities and patterns that indicate fraudulent activity or possible threats. This is especially crucial in businesses like finance, insurance, and cybersecurity, where early discovery can save large losses.

Real-time Decision Making

Big data analytics can deliver insights in real or near real-time, enabling businesses to make decisions based on data. This competence is critical in dynamic contexts where quick decisions are required to capitalise on opportunities or manage risks.

Scalability and Flexibility

Big data analytics solutions are built to manage large amounts of data from different sources and formats. They provide scalability to support increasing data quantities, as well as flexibility to react to changing business requirements and data sources.

Competitive Advantage

Leveraging big data analytics efficiently can give firms a competitive advantage by allowing them to innovate, optimise processes, and better understand their consumers and market trends.

Compliance and Regulatory Requirements

Big data analytics could help firms in ensuring compliance with relevant regulations and standards by analysing and monitoring data for legal and ethical requirements, particularly in the healthcare and finance industries.

Overall, the core deliverables of big data analytics are focused on using data to drive strategic decision-making, increase operational efficiency, improve consumer experiences, and gain a competitive advantage in the marketplace.

Advertisements