- Statistics Tutorial
- Home
- Adjusted R-Squared
- Analysis of Variance
- Arithmetic Mean
- Arithmetic Median
- Arithmetic Mode
- Arithmetic Range
- Bar Graph
- Best Point Estimation
- Beta Distribution
- Binomial Distribution
- Black-Scholes model
- Boxplots
- Central limit theorem
- Chebyshev's Theorem
- Chi-squared Distribution
- Chi Squared table
- Circular Permutation
- Cluster sampling
- Cohen's kappa coefficient
- Combination
- Combination with replacement
- Comparing plots
- Continuous Uniform Distribution
- Continuous Series Arithmetic Mean
- Continuous Series Arithmetic Median
- Continuous Series Arithmetic Mode
- Cumulative Frequency
- Co-efficient of Variation
- Correlation Co-efficient
- Cumulative plots
- Cumulative Poisson Distribution
- Data collection
- Data collection - Questionaire Designing
- Data collection - Observation
- Data collection - Case Study Method
- Data Patterns
- Deciles Statistics
- Discrete Series Arithmetic Mean
- Discrete Series Arithmetic Median
- Discrete Series Arithmetic Mode
- Dot Plot
- Exponential distribution
- F distribution
- F Test Table
- Factorial
- Frequency Distribution
- Gamma Distribution
- Geometric Mean
- Geometric Probability Distribution
- Goodness of Fit
- Grand Mean
- Gumbel Distribution
- Harmonic Mean
- Harmonic Number
- Harmonic Resonance Frequency
- Histograms
- Hypergeometric Distribution
- Hypothesis testing
- Individual Series Arithmetic Mean
- Individual Series Arithmetic Median
- Individual Series Arithmetic Mode
- Interval Estimation
- Inverse Gamma Distribution
- Kolmogorov Smirnov Test
- Kurtosis
- Laplace Distribution
- Linear regression
- Log Gamma Distribution
- Logistic Regression
- Mcnemar Test
- Mean Deviation
- Means Difference
- Multinomial Distribution
- Negative Binomial Distribution
- Normal Distribution
- Odd and Even Permutation
- One Proportion Z Test
- Outlier Function
- Permutation
- Permutation with Replacement
- Pie Chart
- Poisson Distribution
- Pooled Variance (r)
- Power Calculator
- Probability
- Probability Additive Theorem
- Probability Multiplecative Theorem
- Probability Bayes Theorem
- Probability Density Function
- Process Capability (Cp) & Process Performance (Pp)
- Process Sigma
- Quadratic Regression Equation
- Qualitative Data Vs Quantitative Data
- Quartile Deviation
- Range Rule of Thumb
- Rayleigh Distribution
- Regression Intercept Confidence Interval
- Relative Standard Deviation
- Reliability Coefficient
- Required Sample Size
- Residual analysis
- Residual sum of squares
- Root Mean Square
- Sample planning
- Sampling methods
- Scatterplots
- Shannon Wiener Diversity Index
- Signal to Noise Ratio
- Simple random sampling
- Skewness
- Standard Deviation
- Standard Error ( SE )
- Standard normal table
- Statistical Significance
- Statistics Formulas
- Statistics Notation
- Stem and Leaf Plot
- Stratified sampling
- Student T Test
- Sum of Square
- T-Distribution Table
- Ti 83 Exponential Regression
- Transformations
- Trimmed Mean
- Type I & II Error
- Variance
- Venn Diagram
- Weak Law of Large Numbers
- Z table
- Statistics Useful Resources
- Statistics - Discussion
Statistics - Continuous Series Arithmetic Median
When data is given based on ranges along with their frequencies. Following is an example of continous series −
Items | 0-5 | 5-10 | 10-20 | 20-30 | 30-40 |
---|---|---|---|---|---|
Frequency | 2 | 5 | 1 | 3 | 12 |
Formula
$Median = {L} + \frac{(\frac{n}{2}\ -\ c.f.)}{f} \times {i}$
Where −
${L}$ = Lower limit of median class, median class is that class where $\frac{n}{2}^{th}$ item is lying.
${c.f.}$ = Cumulative frequency of the class preceding the median class.
${f}$ = Frequency of median class.
${i}$ = Class interval of median class.
Arithmetic Median is a useful measure of central tendency in case the data type is nominal data. Since it is a positional average, it does not get affected by extreme values.
Example
Problem Statement −
In a study conducted in an organization, the distribution of income across the workers is observed. Find the the median wage of the workers of the organization.
06 men get less than Rs. 500
13 men get less than Rs. 1000
22 men get less than Rs. 1500
30 men get less than Rs. 2000
34 men get less than Rs. 2500
40 men get less than Rs. 3000
Solution −
Given are the cumulative frequencies of the workers. Hence we first find the simple frequency and present the data in tabular form.
Income (rs.) |
M.P. m |
Frequency f |
(m-1250)/500 d |
fd |
c.f |
---|---|---|---|---|---|
0 - 500 | 250 | 6 | -2 | -12 | 6 |
500 - 1000 | 750 | 7 | -1 | -7 | 13 |
1000 - 1500 | 1250 | 9 | 0 | 0 | 22 |
1500 - 2000 | 1750 | 8 | 1 | 8 | 30 |
2000 - 2500 | 2250 | 4 | 2 | 8 | 34 |
2500 - 3000 | 2750 | 6 | 3 | 18 | 40 |
N = 40 | ∑ fd = 15 |
In order to simplify the calculation, a common factor i = 500 has been taken. Using the following formula for calculating median wage.
$Median = {L} + \frac{(\frac{n}{2}\ -\ c.f.)}{f} \times {i}$
Where −
${L}$ = 1000
$\frac{n}{2}$ = 20
${c.f.}$ = 13
${f}$ = 9
${i}$ = 500
Thus
As 1388.9 ≃ 1389.
The median wage is Rs. 1389.