- Statistics Tutorial
- Home
- Adjusted R-Squared
- Analysis of Variance
- Arithmetic Mean
- Arithmetic Median
- Arithmetic Mode
- Arithmetic Range
- Bar Graph
- Best Point Estimation
- Beta Distribution
- Binomial Distribution
- Black-Scholes model
- Boxplots
- Central limit theorem
- Chebyshev's Theorem
- Chi-squared Distribution
- Chi Squared table
- Circular Permutation
- Cluster sampling
- Cohen's kappa coefficient
- Combination
- Combination with replacement
- Comparing plots
- Continuous Uniform Distribution
- Continuous Series Arithmetic Mean
- Continuous Series Arithmetic Median
- Continuous Series Arithmetic Mode
- Cumulative Frequency
- Co-efficient of Variation
- Correlation Co-efficient
- Cumulative plots
- Cumulative Poisson Distribution
- Data collection
- Data collection - Questionaire Designing
- Data collection - Observation
- Data collection - Case Study Method
- Data Patterns
- Deciles Statistics
- Discrete Series Arithmetic Mean
- Discrete Series Arithmetic Median
- Discrete Series Arithmetic Mode
- Dot Plot
- Exponential distribution
- F distribution
- F Test Table
- Factorial
- Frequency Distribution
- Gamma Distribution
- Geometric Mean
- Geometric Probability Distribution
- Goodness of Fit
- Grand Mean
- Gumbel Distribution
- Harmonic Mean
- Harmonic Number
- Harmonic Resonance Frequency
- Histograms
- Hypergeometric Distribution
- Hypothesis testing
- Individual Series Arithmetic Mean
- Individual Series Arithmetic Median
- Individual Series Arithmetic Mode
- Interval Estimation
- Inverse Gamma Distribution
- Kolmogorov Smirnov Test
- Kurtosis
- Laplace Distribution
- Linear regression
- Log Gamma Distribution
- Logistic Regression
- Mcnemar Test
- Mean Deviation
- Means Difference
- Multinomial Distribution
- Negative Binomial Distribution
- Normal Distribution
- Odd and Even Permutation
- One Proportion Z Test
- Outlier Function
- Permutation
- Permutation with Replacement
- Pie Chart
- Poisson Distribution
- Pooled Variance (r)
- Power Calculator
- Probability
- Probability Additive Theorem
- Probability Multiplecative Theorem
- Probability Bayes Theorem
- Probability Density Function
- Process Capability (Cp) & Process Performance (Pp)
- Process Sigma
- Quadratic Regression Equation
- Qualitative Data Vs Quantitative Data
- Quartile Deviation
- Range Rule of Thumb
- Rayleigh Distribution
- Regression Intercept Confidence Interval
- Relative Standard Deviation
- Reliability Coefficient
- Required Sample Size
- Residual analysis
- Residual sum of squares
- Root Mean Square
- Sample planning
- Sampling methods
- Scatterplots
- Shannon Wiener Diversity Index
- Signal to Noise Ratio
- Simple random sampling
- Skewness
- Standard Deviation
- Standard Error ( SE )
- Standard normal table
- Statistical Significance
- Statistics Formulas
- Statistics Notation
- Stem and Leaf Plot
- Stratified sampling
- Student T Test
- Sum of Square
- T-Distribution Table
- Ti 83 Exponential Regression
- Transformations
- Trimmed Mean
- Type I & II Error
- Variance
- Venn Diagram
- Weak Law of Large Numbers
- Z table
- Statistics Useful Resources
- Statistics - Discussion
Statistics - Continuous Series Arithmetic Mean
When data is given based on ranges alongwith their frequencies. Following is an example of continous series:
Items | 0-5 | 5-10 | 10-20 | 20-30 | 30-40 |
---|---|---|---|---|---|
Frequency | 2 | 5 | 1 | 3 | 12 |
In case of continous series, a mid point is computed as $\frac{lower-limit + upper-limit}{2}$ and Arithmetic Mean is computed using following formula.
Formula
$\bar{x} = \frac{f_1m_1 + f_2m_2 + f_3m_3........+ f_nm_n}{N}$
Where −
${N}$ = Number of observations.
${f_1,f_2,f_3,...,f_n}$ = Different values of frequency f.
${m_1,m_2,m_3,...,m_n}$ = Different values of mid points for ranges.
Example
Problem Statement −
Let's calculate Arithmetic Mean for the following continous data −
Items | 0-10 | 10-20 | 20-30 | 30-40 |
---|---|---|---|---|
Frequency | 2 | 5 | 1 | 3 |
Solution −
Based on the given data, we have −
Items | Mid-pt m |
Frequency f |
${fm}$ |
---|---|---|---|
0-10 | 5 | 2 | 10 |
10-20 | 15 | 5 | 75 |
20-30 | 25 | 1 | 25 |
30-40 | 35 | 3 | 105 |
${N=11}$ | ${\sum fm=215}$ |
Based on the above mentioned formula, Arithmetic Mean $\bar{x}$ will be −
$\bar{x} = \frac{215}{11} \\[7pt]
\, = {19.54}$
The Arithmetic Mean of the given numbers is 19.54.
Calculator
Advertisements